Elliptic and modular functions: from Gauss to Dedekind to Hecke
This thorough work presents the fundamental results of modular function theory as developed during the nineteenth and early-twentieth centuries. It features beautiful formulas and derives them using skillful and ingenious manipulations, especially classical methods often overlooked today. Starting w...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2017
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This thorough work presents the fundamental results of modular function theory as developed during the nineteenth and early-twentieth centuries. It features beautiful formulas and derives them using skillful and ingenious manipulations, especially classical methods often overlooked today. Starting with the work of Gauss, Abel, and Jacobi, the book then discusses the attempt by Dedekind to construct a theory of modular functions independent of elliptic functions. The latter part of the book explains how Hurwitz completed this task and includes one of Hurwitz's landmark papers, translated by the author, and delves into the work of Ramanujan, Mordell, and Hecke. For graduate students and experts in modular forms, this book demonstrates the relevance of these original sources and thereby provides the reader with new insights into contemporary work in this area |
Beschreibung: | Title from publisher's bibliographic system (viewed on 21 Apr 2017) |
Beschreibung: | 1 online resource (xiii, 475 pages) |
ISBN: | 9781316671504 |
DOI: | 10.1017/9781316671504 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044369281 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 170626s2017 |||| o||u| ||||||eng d | ||
020 | |a 9781316671504 |9 978-1-316-67150-4 | ||
024 | 7 | |a 10.1017/9781316671504 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316671504 | ||
035 | |a (OCoLC)992499836 | ||
035 | |a (DE-599)BVBBV044369281 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.983 | |
084 | |a SG 590 |0 (DE-625)143069: |2 rvk | ||
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
100 | 1 | |a Roy, Ranjan |d 1948- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elliptic and modular functions |b from Gauss to Dedekind to Hecke |c Ranjan Roy, Beloit College |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2017 | |
300 | |a 1 online resource (xiii, 475 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 21 Apr 2017) | ||
520 | |a This thorough work presents the fundamental results of modular function theory as developed during the nineteenth and early-twentieth centuries. It features beautiful formulas and derives them using skillful and ingenious manipulations, especially classical methods often overlooked today. Starting with the work of Gauss, Abel, and Jacobi, the book then discusses the attempt by Dedekind to construct a theory of modular functions independent of elliptic functions. The latter part of the book explains how Hurwitz completed this task and includes one of Hurwitz's landmark papers, translated by the author, and delves into the work of Ramanujan, Mordell, and Hecke. For graduate students and experts in modular forms, this book demonstrates the relevance of these original sources and thereby provides the reader with new insights into contemporary work in this area | ||
648 | 7 | |a Geschichte |2 gnd |9 rswk-swf | |
650 | 4 | |a Elliptic functions | |
650 | 4 | |a Modular functions | |
650 | 4 | |a Functions | |
650 | 0 | 7 | |a Elliptische Funktion |0 (DE-588)4134665-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modulfunktion |0 (DE-588)4039855-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elliptische Funktion |0 (DE-588)4134665-8 |D s |
689 | 0 | 1 | |a Modulfunktion |0 (DE-588)4039855-9 |D s |
689 | 0 | 2 | |a Geschichte |A z |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, hardback |z 978-1-107-15938-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781316671504 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029771731 | ||
966 | e | |u https://doi.org/10.1017/9781316671504 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316671504 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804177623074471936 |
---|---|
any_adam_object | |
author | Roy, Ranjan 1948- |
author_facet | Roy, Ranjan 1948- |
author_role | aut |
author_sort | Roy, Ranjan 1948- |
author_variant | r r rr |
building | Verbundindex |
bvnumber | BV044369281 |
classification_rvk | SG 590 SK 180 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316671504 (OCoLC)992499836 (DE-599)BVBBV044369281 |
dewey-full | 515/.983 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.983 |
dewey-search | 515/.983 |
dewey-sort | 3515 3983 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781316671504 |
era | Geschichte gnd |
era_facet | Geschichte |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02820nmm a2200517zc 4500</leader><controlfield tag="001">BV044369281</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170626s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316671504</subfield><subfield code="9">978-1-316-67150-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781316671504</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316671504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992499836</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044369281</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.983</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SG 590</subfield><subfield code="0">(DE-625)143069:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roy, Ranjan</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elliptic and modular functions</subfield><subfield code="b">from Gauss to Dedekind to Hecke</subfield><subfield code="c">Ranjan Roy, Beloit College</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 475 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 21 Apr 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This thorough work presents the fundamental results of modular function theory as developed during the nineteenth and early-twentieth centuries. It features beautiful formulas and derives them using skillful and ingenious manipulations, especially classical methods often overlooked today. Starting with the work of Gauss, Abel, and Jacobi, the book then discusses the attempt by Dedekind to construct a theory of modular functions independent of elliptic functions. The latter part of the book explains how Hurwitz completed this task and includes one of Hurwitz's landmark papers, translated by the author, and delves into the work of Ramanujan, Mordell, and Hecke. For graduate students and experts in modular forms, this book demonstrates the relevance of these original sources and thereby provides the reader with new insights into contemporary work in this area</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elliptic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modular functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Funktion</subfield><subfield code="0">(DE-588)4134665-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulfunktion</subfield><subfield code="0">(DE-588)4039855-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elliptische Funktion</subfield><subfield code="0">(DE-588)4134665-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Modulfunktion</subfield><subfield code="0">(DE-588)4039855-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, hardback</subfield><subfield code="z">978-1-107-15938-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781316671504</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029771731</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316671504</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316671504</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044369281 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:51:01Z |
institution | BVB |
isbn | 9781316671504 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029771731 |
oclc_num | 992499836 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 475 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Roy, Ranjan 1948- Verfasser aut Elliptic and modular functions from Gauss to Dedekind to Hecke Ranjan Roy, Beloit College Cambridge Cambridge University Press 2017 1 online resource (xiii, 475 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 21 Apr 2017) This thorough work presents the fundamental results of modular function theory as developed during the nineteenth and early-twentieth centuries. It features beautiful formulas and derives them using skillful and ingenious manipulations, especially classical methods often overlooked today. Starting with the work of Gauss, Abel, and Jacobi, the book then discusses the attempt by Dedekind to construct a theory of modular functions independent of elliptic functions. The latter part of the book explains how Hurwitz completed this task and includes one of Hurwitz's landmark papers, translated by the author, and delves into the work of Ramanujan, Mordell, and Hecke. For graduate students and experts in modular forms, this book demonstrates the relevance of these original sources and thereby provides the reader with new insights into contemporary work in this area Geschichte gnd rswk-swf Elliptic functions Modular functions Functions Elliptische Funktion (DE-588)4134665-8 gnd rswk-swf Modulfunktion (DE-588)4039855-9 gnd rswk-swf Elliptische Funktion (DE-588)4134665-8 s Modulfunktion (DE-588)4039855-9 s Geschichte z DE-604 Erscheint auch als Druck-Ausgabe, hardback 978-1-107-15938-9 https://doi.org/10.1017/9781316671504 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Roy, Ranjan 1948- Elliptic and modular functions from Gauss to Dedekind to Hecke Elliptic functions Modular functions Functions Elliptische Funktion (DE-588)4134665-8 gnd Modulfunktion (DE-588)4039855-9 gnd |
subject_GND | (DE-588)4134665-8 (DE-588)4039855-9 |
title | Elliptic and modular functions from Gauss to Dedekind to Hecke |
title_auth | Elliptic and modular functions from Gauss to Dedekind to Hecke |
title_exact_search | Elliptic and modular functions from Gauss to Dedekind to Hecke |
title_full | Elliptic and modular functions from Gauss to Dedekind to Hecke Ranjan Roy, Beloit College |
title_fullStr | Elliptic and modular functions from Gauss to Dedekind to Hecke Ranjan Roy, Beloit College |
title_full_unstemmed | Elliptic and modular functions from Gauss to Dedekind to Hecke Ranjan Roy, Beloit College |
title_short | Elliptic and modular functions |
title_sort | elliptic and modular functions from gauss to dedekind to hecke |
title_sub | from Gauss to Dedekind to Hecke |
topic | Elliptic functions Modular functions Functions Elliptische Funktion (DE-588)4134665-8 gnd Modulfunktion (DE-588)4039855-9 gnd |
topic_facet | Elliptic functions Modular functions Functions Elliptische Funktion Modulfunktion |
url | https://doi.org/10.1017/9781316671504 |
work_keys_str_mv | AT royranjan ellipticandmodularfunctionsfromgausstodedekindtohecke |