Ryszard Kilvington: nieskończoność i geometria
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | Polish |
Veröffentlicht: |
Łódź
Wydawnictwo Uniwersytetu Łódzkiego
2016
|
Ausgabe: | Wydanie I |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Literaturverzeichnis Register // Personenregister Register // Sachregister Abstract |
Beschreibung: | 174 Seite Diagramme 25 cm |
ISBN: | 9788380882713 8380882717 9788380882720 8380882725 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044365017 | ||
003 | DE-604 | ||
005 | 20180807 | ||
007 | t | ||
008 | 170622s2016 |||| |||| 00||| pol d | ||
020 | |a 9788380882713 |9 978-83-8088-271-3 | ||
020 | |a 8380882717 |9 83-8088-271-7 | ||
020 | |a 9788380882720 |9 978-83-8088-272-0 | ||
020 | |a 8380882725 |9 83-8088-272-5 | ||
035 | |a (OCoLC)1005713356 | ||
035 | |a (DE-599)BVBBV044365017 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a pol | |
049 | |a DE-12 | ||
100 | 1 | |a Podkónski, Robert |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1046733524 |4 aut | |
245 | 1 | 0 | |a Ryszard Kilvington |b nieskończoność i geometria |c Robert Podkoński |
250 | |a Wydanie I | ||
264 | 1 | |a Łódź |b Wydawnictwo Uniwersytetu Łódzkiego |c 2016 | |
300 | |a 174 Seite |b Diagramme |c 25 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
505 | 8 | |a Bibliografie Seite 157-166. Indeksy | |
546 | |a Zusammenfassung in englischer Sprache | ||
600 | 1 | 7 | |a Kilvington, Richard / (1302?-1361?) / krytyka i interpretacja |2 jhpk |
600 | 0 | 7 | |a Richardus |c de Kilvington |d 1305-1361 |0 (DE-588)118961144 |2 gnd |9 rswk-swf |
650 | 7 | |a Filozofia przyrody / średniowiecze |2 jhpk | |
650 | 7 | |a Nieskończoność |2 jhpk | |
650 | 7 | |a Matematyka średniowieczna / filozofia |2 jhpk | |
650 | 0 | 7 | |a Naturphilosophie |0 (DE-588)4041408-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unendlichkeit |0 (DE-588)4136067-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Richardus |c de Kilvington |d 1305-1361 |0 (DE-588)118961144 |D p |
689 | 0 | 1 | |a Unendlichkeit |0 (DE-588)4136067-9 |D s |
689 | 0 | 2 | |a Naturphilosophie |0 (DE-588)4041408-5 |D s |
689 | 0 | 3 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung BSB Muenchen 19 - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung BSB Muenchen 19 - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Literaturverzeichnis |
856 | 4 | 2 | |m Digitalisierung BSB Muenchen 19 - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000003&line_number=0003&func_code=DB_RECORDS&service_type=MEDIA |3 Register // Personenregister |
856 | 4 | 2 | |m Digitalisierung BSB Muenchen 19 - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000004&line_number=0004&func_code=DB_RECORDS&service_type=MEDIA |3 Register // Sachregister |
856 | 4 | 2 | |m Digitalisierung BSB Muenchen 19 - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000005&line_number=0005&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
940 | 1 | |n oe | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029767564 | ||
942 | 1 | 1 | |c 001.09 |e 22/bsb |f 09023 |g 41 |
942 | 1 | 1 | |c 001.09 |e 22/bsb |f 09023 |g 438 |
Datensatz im Suchindex
_version_ | 1804177615764848640 |
---|---|
adam_text | I
Spis tresci
PRZEDMOWA..................................................................... 7
ROZDZIAL I. Struktura wielkosci ci^glych w filozofii przyrody Arystotelesa.. 11
ROZDZIAL II. Spor o nature wielkosci ci^glych i nieskonczonosci na Uniwersytecie
Oksfordzkim w pocz^tkach cztemastego wieku..................... 17
II. 1. Struktura swiata wediug Roberta Grosseteste’a..................... 19
II. 2. Nieskohczonosc a zagadnienie wiecznosci wszechswiata.............. 25
II. 3. Henryka z Harclay koncepcja nieskonczonosci i struktury wielkosci ci^glych 28
II. 4. Logika przeciw atomizmowi - Wilhelm z Alnwick i Wilhelm Ockham.... 38
II. 5. Geometria przeciw atomizmowi - Jan Duns Szkot..................... 51
ROZDZIAL III. Struktura i natura wielkosci ci^glych w kwestii Utrum continuum
sit divisibile in infinitum Ryszarda Kilvingtona............... 59
III. 1. Ryszard Kilvington i jego dziela - stan badan.................... 60
III. 2. Kwestia Utrum continuum sit divisibile in infinitum na tie pozostalych pism
Ryszarda Kilvingtona................................................ 63
III. 3. Struktura kwestii................................................. 67
III. 4. Wykorzystanie metod matematycznych w odniesieniu do problemu struk-
tury wielkosci ci^glych w kwestii Utrum continuum sit divisibile in
infinitum........................................................... 69
III. 4.1. Rachunek proporcji........................................ 69
III. 4.2. Punkty jako granice....................................... 75
III. 4.3. Wielkosci nieskohczenie male — angulus contingentiae..... 81
III. 4.4. Poj^cie ‘rownosci’ w geometrii i filozofii przyrody...... 86
III. 4.5. Wielkosci nieskohczenie duze - linea girativa............ 90
III. 4.6. „Totum est sua parte maius”.............................. 97
III. 4.7. „Totum est maius quam partes suae”........................ 99
III. 5. Zwi^zki matematyki z filozofii przyrody w kwestii Utrum continuum sit
divisibile in infinitum............................................ 102
III. 5.1. Nieadekwatnosc praw matematyki wobec scholastycznej filozofii
przyrody.................................................... 104
III. 5.2. Uzytecznosc matematyki dla filozofii przyrody............ 106
III. 6. Podsumowanie..................................................... Ill
ROZDZIAL IV. Rozwi^zania problemu struktury kontinuum wypracowane przez
autorów wspótczesnych Kilvingtonowi.......................... 115
IV. 1. Traktat De indivisibilibus Adama Wodehama......................... 115
IV. 2. Tractatus de continuo Tomasza Bradwardine’a........................ 120
IV. 3. Zwolennicy i oponenci koncepcji struktury kontinuum i nieskoñczonosci
Ry szarda Kilvingtona............................................... 128
IV. 3.1. Krytyka koncepcji nieskoñczonosci Ryszarda Kilvingtona w De
causa Dei Tomasza Bradwardine’a.............................. 128
IV. 3.2. Spadkobiercy pomysíów Ryszarda Kilvingtona................. 134
IV. 3.2a. „Geometria nieskoñczonosci” - linea girativa w kwestiach do
Sentencji Rogera Rosetha............................... 135
IV. 3.2b. Komentarz do Sentencji Grzegorza z Rimini................. 139
IV. 3.2c. Tractatus de infinito Jana Burydana....................... 142
Zakoñczenie.................................................................. 151
Bibliografía................................................................. 157
Indeks osób................................................................. 167
Indeks poj^c................................................................. 169
Summary..................................................................... 173
Bibliografía
Teksty zródlowe
Anonímus , IJtnirn unum infinitum sit maius alio infinito, MS. Paryz, Bibliotheque
Nationale, fonds. lat. 15888.
Thomas Bradwardine , Thomae Bradwardini Archiepiscopi olim Cantuariensis De
causa Dei contra Pelagium et de virtute causamm ad suos Mer ton tenses, Londini
1618.
Buridanus Johannes, Utrum linea componitur ex punetis, [w:] Johannis Buridani Ques-
tions super libros Physicorum secundum ultimam lecturam, Venice 1502 (Re-
print: Frankfurt 1964).
Nicolaus de Cusa Nicolai Cusae De docta ignorantia, [w:] Nicolai Cusae Cardinalis
Opera, Parisiis 1514.
Hesse Benedictus, Quaestiones super octo libros ‘Physicorum ’ Aristotelis, S. Wielgus
(wyd.), Wroclaw-Warszawa-Kraków et al. 1984.
Kilvington Ricardus, Utrum iustitia sit virtus moralis perfecta, MS Watykan, Biblioteca
Apostólica Vaticana, Ottob. lat 179.
Kilvington Ricardus, Utrum unum infinitum potest esse maius alio, MS Watykan, Bibli-
oteca Apostólica Vaticana, Vat. lat. 4353.
Swineshead Ricardus, Liber calculationum, Venetiis 1520.
Wydania
Alnwick Gullielmus de, Determination 2, MS Vat. Pal. lat 1805, za: J.E. Murdoch,
Naissance et Développement de P Atomisme au Bas Moyen Âge Latin, „Cahiers
d’études médiévales II: La science et la nature: théories et pratiques”, Montreal-
Paris 1974.
Bacon Rogerus, Communia mathematica, R. Steele (wyd.), Oxford 1940.
Bacon Rogerus, Compendium studii philosophiae, [w:] Fratris Rogeri Baconi opera
quaedam hactenus inedita, J.S. Brewer (wyd.), London 1859.
Bacon Roger, Quaestiones supra librum De causis, R. Steele (wyd.), Opera hactenus
inedita Rogeri Baconi, Londini 1935.
Boetius A.M.S., De Arithmetica libri duo, Patrologiae Cursus Complétas ...series
latina, J.P. Migne (ed.), t. LXIII, Parisiis 1882.
Bonaventura, Commentarius in quattuor libros Sententiarum Petri Lombardi, (Editio
minor, Opera theologica selecta, Quaracchi 1938).
Bradwardine Thomas, Geometria speculativa, [w:] A.G. Mol land, Thomas Bradward-
ine. Geometria speculativa, Latin text and English translation, with an introduc-
tion and commentary, Stuttgart 1989.
158
Bradwardine Thomas, Tractatus de continue*, J.E. Murdoch (wyd.) [w:] J.E. Murdoch,
Geometry and the Continuum in the Fourteenth Century: A Philosophical Analysis
of Thomas Bradwardine s Tractatus de continuo Madison 1957.
Bradwardine Thomas Bradwardine, Tractatus proportionum seu de proportionibus
velocitatum in motibus, H.L. Crosby, Jr. (wyd.), [w:] Thomas of Bradwardine, His
„ Tractatus de Proportionibus Its Significance for the Development of Mathe-
matical Physics, Madison 1955.
Buridanus Johannes, Tractatus de infmito (Quaestiones super libros Physicorum secun-
dum ultimam lecturam, Liber IH, quaestiones 14-19% [w:] John Buridan s „ Trac-
tatus de infmito , J.M.M.H. Thijssen (wyd.), Nijmegen 1991.
Chatton Walter, Quaestio utrum quantum et continuum componantur ex indivisibilibus
sicut ex partibus integrant ¿bus, J.E. Murdoch, E.A. Synan (wyd.), „Franciscan
Studies” 26(1966), s. 234-266.
Johannes Duns Scotus, Ordinatio, Liber Secundus, dist. II, pars. II, quaestio 5: Utrum
angelus possit mover i de loco ad locum motu continuo, [w:] Doctor is Subtil is et
Mariani loannis Duns Scoti Opera Omnia, t. VII, Civitas Vaticana 1973.
Euc!ides , Euclidis Elementorum libri priores XU, ex Commandini et Gregorii, ver-
sion i bus latinis, ed. Samuel, Episcopus Rojfensis, Oxonii: e Typographico Claren-
doniano MDCCCll (1802).
Abu Hamid Al-Gazal! AlgazeFs Metaphysics. A Medieval Translation, Rev. Muckle
J.T., C. S. B. (wyd.), Toronto 1933.
Robertus Grosseteste , Roberti Grosseteste, Episcopi Lincolnienisis, Commentarius in
ViH Libros Physicorum Aristotelis, R.C. Dales (wyd.), Boulder, Colorado 1963.
Grosseteste Robertus, Commentarius in Posteriorum Analyticorum Libros, P. Rossi
(wyd.), Firenze 1981.
Henry of Harclay, Ordinary Questions, Mark G. Henninger SJ (wyd.), Oxford 2008.
Heytesbury Guillaume, Sophismata, Fabienne Pironet (wyd.), URL = http://
mapageweb.umontreal.ca/pironetf/Sophismata.html .
Kilvington Ricardus, Sophismata, B.E. Kretzmann, N. Kretzmann (wyd.), Auctores
Britannici Medii Aevi XII, Oxford 1991.
Kilvington Ricardus, Utrum continuum sit divisibile in infinitum, [w:] R. Podkoriski,
Richard Kilvington „ Utrum continuum sit divisibile in infinitum - an edition,
„Mediaevalia Philosophica Polonorum” XXXVI(II), 2007, s. 123-175.
Johannes Maior , Le trade «De Tinfini» de Jean Mair, (wyd. i przekl. na j. franc.)
H. Elie, Paryz 1938.
Ockham Gullielmus de, Expositio super libros Physicorum, Libri IV-VIIt, R- Wood,
R. Green, G. Gal, J. Giermek, F. Kelly, G. Leibold, G. Etzkom (wyd.),
St. Bonaventure New York 1985 {Operaphilosophica, t. V).
Ockham Gullielmus de, Quodlibeta Septem, Quodlibet I, Quaestio 9: Utrum linea com-
ponatur ex punctis, [w:] Gullielmi de Ockham Opera Philosophica et Theologica
(Opera Theologica), t. IX, Joseph C. Way C. S. B. (wyd.), St. Bonaventure N. Y.,
1985.
Oresme Nicole, De proportionibus proportionum. Ad pauca respicientes, E. Grant
(wyd.), Madison 1966.
Roseth Roger, Lectura super Sententias, Quaestiones 3, 4 5, O. Hallamaa (wyd.),
Helsinki 2005.
Wodeham Adam de, Tractatus de indivisibilibus. A Critical Edition with Introduction,
Translation and Textual Notes, R. Wood (wyd. i przekl. na j. ang.), Dordrecht 1988.
159
Przeklady
Ariykufy paryskie potqpione przez Ste/ana Tempier 7 marca 1277 roku, przel.
Wl. Señko, [w:] Wszystko to ze zdziwienia. Antología tekstów füozoficznych z XIII
wieku, K. Krauze-Blachowicz (red.), Warszawa 2002.
sw. Anzelm z Canterbury, Proslogion, [w:] Monologion, Proslogion, przel.
T. Wlodarczyk, Warszawa 1992.
Arystoteles, Analityki pierwsze, przel. K. Lesniak, [w:] Dziela wszystkie, t.l, Warszawa
1990.
Arystoteles, Analityki wtóre, przel. K. Lesniak, [w:] Dziela wszystkie, t. 1, Warszawa
1990.
Arystoteles, Fizyka, przeb K. Lesniak, [w:j Dziela wszystkie, t 2, Warszawa 1990.
(Pseudo-)Arystoteles, Mechanika, przel. L. Regner, [w:] Pisma rozne, Warszawa 1978
Arystoteles, Metafizyka, przel. K. Lesniak, [w:] Dziela wszystkie, t. 2, Warszawa 1990.
Arystoteles, (9 ¿/«szy, przel. P. Siwek, Warszawa 1988.
Arystoteles, (9 niebie, przel. P. Siwek, [w:] Dziela wszystkie, t. 2, Warszawa 1990.
Arystoteles, 9 powstawaniu i niszczeniu, przel. L. Regner, [w:] Dziela wszystkie, t. 2,
Warszawa 1990.
(Pseudo-)Arystoteles, (9 odcinkach niepodzielnych, przel. L. Regner, [w:] Pisma rozne,
Warszawa 1978.
sw. Augustyn, (9 panstwie Bozymy przel. W Kornatowski, Warszawa 2003.
Bacon Roger, Dzielo wiqksze, przel. T. Wlodarczyk, K^ty 2006.
Cantor G., (9 pozaskonczonosci, przel. R. Murawski, [w:] Filozofia matematyki. Antolo-
gía tekstów klasycznych, R. Murawski (opr.), Poznan 1994.
Einstein A., Geometría a doswiadczenie, przel. K. Napiórkowski, [w:] Pisma filozo-
ficzne, Warszawa 2001.
Euclid, Thirteen Books of the Elements, sir Thomas L. Heath (opr. i przekl. ang.),
t. 1-3, New York 1956.
Euklides , Euklidesa Poczqtków Geometrii ksiqg osmioro, to test szesc pierwszych,
iedenasta i dwunasta z dodanemi przypisami... przez Józef a Czecha, Wilno 1817.
Euklides , Z ksiqg i l Elementów, ks. 1, def. 3, przel. R. Murawski, [w:] Filozofia ma-
tematyki. Antología tekstów klasycznych, R. Murawski (opr.), Poznan 1994.
Grosseteste Robert, Komentarz do Fizyki, [w:] M. Boczar, Grosseteste, Warszawa
1994.
Grosseteste Robert, O liniach, kqtach i figurach, albo o zalamaniu i odbiciu promienf
[w:] M. Boczar, Grosseteste, Warszawa 1994.
Grosseteste Robert, (9 swietle, czyli o pochodzeniu form, [w:] M. Boczar, Grosseteste,
Warszawa 1994.
Henryk z Gandawy, Czy moze zachodzic jakas przemiana nie majqca podloza
w materii?, przel. M. Gensler, D. Gwis, E. Jung-Palczewska, [w:] Wszystko to ze
zdziwienia. Antología tekstów füozoficznych z XIII wieku, K. Krauze-Blachowicz
(red.), Warszawa 2002.
Ricardus Kilvington , The Sophismata of Richard Kilvington, B.E. Kretzmann,
N. Kretzmann (opr. i przekl. i wst^p wj. ang.), Cambridge 1990.
Carus Titus Lucretius, (9 naturze rzeczy, przel. Grzegorz Zurek, Warszawa 1994.
Platon, Timaios, przel. P. Siwek, [w:] Timaios. Kritias albo Atlantyk, Warszawa 1986.
sw. Tomasz z Akwinu, Kwestie dyskutowane o prawdzie, przel. L. Kuczyñski, t. I, K§ty
1998.
160
sw. Tomasz z Akwinu, O wiecznosci swiata, przel. J. Salij, [w:] Dzieia wybrane, Po-
znan 1984.
sw. Tomasz z Akwinu, Suma teologiczna, przel. P. Belch, t. 1, Londyn 1975.
Opracowania
Ancient and Medieval Science, R. Taton (red.), London 1963.
Aveni A., Rozmowy z planetami. W jaki sposob nauka i mitologia wymyslify kosmos,
przel. R. Bartold, Poznan 2000.
Beaujouan G., Medieval Science in the Christian West, [w:] Ancient and Medieval Sci-
ence, R. Taton (red.), London 1963, s. 468-532.
Biard J., Maior, John (1467-1550), [w:] Routlege Encyclopedia of Philosophy, t. 6,
s. 54-56.
Boczar M., Grosseteste, Warszawa 1994.
Bourbaki N., Elementy historii matematyki, przel. S. Dobrzycki, Warszawa 1980.
Boyer C.B., The History of the Calculus and its Conceptual Development, New York
1949.
Boyer C.B., A History of Mathematics, New York 1997.
Brown S.F., Chatton Walter, [w:] Routledge Encyclopedia of Philosophy, t. 4, London-
New York 1998, s. 292-294.
The Cambridge Companion to Ockham, P.V. Spade (red.), Cambridge 1999.
The Cambridge History of Later Medieval Philosophy, N. Kretzmann, A. Kenny,
J. Pinborg (red.), Cambridge 1982.
A Catalogue of Incipits of Medieval Scientific Writings in Latin, Lynn Thorndike, Pearl
Kibre (red.), Londyn 1963.
Clagett M., The ‘De curvis superficiebus Archimenidis V a medieval commentary oj
Johannes de Tinemue on book I of *De sphaera et cylindro ’ of Archimedes, „Osi-
ris” 11 (1954), s. 295-346.
Clagett M., Richard Swineshead and Late Medieval Physics, „Osiris” 9 (1950), s. 131—
161.
The Commentary Tradition on Aristotle s De generatione et corruption^ Ancient, Medi-
eval, and Early Modern, J.M.M.H. Thijssen, H.A.G. Braakhuis (red.), Tumhout
1999.
Copleston F., Historia filozofii, t. II, Warszawa 2000.
Courtenay W.J., The Academic and Intellectual Worlds of Ockham, [w:] The Cam-
bridge Companion to Ockham, P.V. Spade (wyd.), s. 17-30.
Courtenay W.J., Adam Wodeham: an Introduction to His Life and Writings, Leiden
1978.
Courtenay W.J., Schools and Scholars in Fourteenth Century England, Princeton 1987.
Courtenay W.J., The role of English Thought in the Transformation of University Edu-
cation in the Late Middle Ages, [w:] Rebirth, Reform and Resilience. University in
Transition 1300-1700, J.M. Kittelson, P. Transue (red.), Columbus 1984, s. 103—
162.
Crombie C., Nauka sredniowieczna i poczqtki nauki nowozytnej, t. 1-2, Warszawa
1960.
The Cultural Context of Medieval Learning, J.E. Murdoch, E.D. Sylla (red.), Dordrecht
1975.
161
Dadaczynski J., Heurystyczne funkcje zalozeh filozoficznych w kontekscie odkrycia
teorii mnogosci Georga Cantor a, Krakow 1994.
Davenport A. A., Measure of a Different Greatness. The Intensive Infinite 1250-1650.
Leiden-Boston-Kôln 1999.
Dod B.G., Aristoteies latinus, [w:] The Cambridge History of Later Medieval Philoso-
phy, N. Kretzmann, A. Kenny, J. Pinborg (red.), Cambridge 1982, s. 45-79.
Drake S., Bradwardine’s function, mediate denomination, and multiple continua, „Phy-
sis” 12(1970), s. 51-68.
Duhem P., Études sur Léonard de Vinci, Paryz 1913.
Duhem P., Le système du monde, Histoire des doctrines cosmologiques de Platon
à Copernic, t. 1-10, Paris 1906-1959.
Duhem P., Medieval Cosmology. Theories of Infinity, Place, Time, Void and the Plu-
rality of Worlds, R. Ariew (opr. i przekl. ang.), Chicago-London 1985.
Dutton B.D., Nicholas ofAutrecourt and William of Ockham on Atomism, Nominalism, and
the Ontology of Motion, „Medieval Philosophy and Theology” 5 (1996), s. 63-85.
The Dynamics of Aristotelian Natural Philosophy from Antiquity to the Seventeenth
Century, C. Leijenhorst, Ch. Lüthy. J.M.M.H. Thijssen (red.), Leiden-Boston-
Kôln 2002.
The Eternity of the World in the Thought of Thomas Aquinas and his Contemporaries,
J.B.M. Wissink (red.), Leiden-New York-Kobenhavn-Koln 1990.
Filozofia matematyki. Antologia tekstow klasycznych, R. Murawski (wybôr, opr.
1 przekl.), Poznan 1994.
Fletcher J.M., The Faculty of Arts, [w:] The History of the University of Oxford, t. 1:
The Early Oxford Schools, J.L Catto (red.), Oxford 1984, s. 369-399.
Gensler M., Bonawentura - wprowadzenie, [w:] Wszystko to ze zdziwienia. Antologia
tekstow filozoficznych z XIII wieku, K. Krauze-Btachowicz (red.), s. 98-102.
Gensler M., Jan Duns Szkot - wprowadzenie, [w:] Wszystko to ze zdziwienia. Antologia
tekstow filozoficznych zXIV wieku, E. Jung-Palczewska (red.), s. 27-33
Ghyka M.C., Zlota liczba. Rytuafy i rytmy pitagorejskie w rozwoju cywilizacji zachod-
niej, przel. I. Kania, Krakow 2001.
Gilson E., Historia filozofii chrzescijahskiej w wiekach srednich, Warszawa 1987.
Gli studi di filosofia medievale fra otto e novecento, R. Imbach, A. Maierù (red.), Roma
1991
Goddu A., Ockham*s Philosophy of Nature, [w:] The Cambridge Companion to Ock-
ham, P.V. Spade (red.), Cambridge 1999, s. 143-167.
Goddu A., The Physics of William of Ockham, Leiden-Kôln 1984.
Grant E., Sredniowieczne podstawy nauki nowozytnej, Warszawa 2005.
Hallamaa O., Continuum, Infinity and Analysis in Theology, „Miscellanea Mediaevalia”
Band 25( 1998), s. 375-388.
Hallamma O., On the Borderline between Logic and Theology: Roger Roseth, Sophis-
mata and Augmentation of Charity, „Documenti e studi suila tradizione filosofica
medievale” XI (2000), s. 354-371.
The History of the University of Oxford, t. 1 : The Early Oxford Schools, J.I. Catto (red.),
Oxford 1984.
Huggett N., Zeno s Paradoxes, [w:] The Stanford Encyclopedia of Philosophy (Summer
2004 Edition), E.N. Zalta (red.), URL = http://plato.stanford.edu/archives/sum
2004/entries/paradox-zeno/ . Infinity and Continuity in Ancient and Medieval
Thought, N. Kretzmann (red.), New York 1982.
162
Jeleñski Sz., Lilavati, Warszawa 1956.
Jung E., Arysioteles na nowo odczytany, Ryszarda Kilvingtona „ Kwestie o mchu ”,
Lódz 2014.
Jung-Palczewska E., Jan Burydan — wprowadzenie, [w:] Wszystko to ze zdziwieniay
AntologíaE. Jung-Palczewska (red.), s. 262-267.
Jung-Palczewska E., Filozofia XIV wieku, [w:] Wszystko to ze zdziwienia. Antología
tekstów fdozoficznych z XJV wieku, E. Jung-Palczewska (red.), s. X1II-XLV.
Jung-Palczewska E., Miqdzy filozofici przyrody a nowozytnym przyrodoznawstwem.
Ryszard Kilvington i fizyka matematyczna w sredniowieczu, Lódz 2002.
Jung-Palczewska E., Mikolaj z Autrecouri — wprowadzenie, [w:] Wszystko to ze zdzi-
wienia. Antología tekstów fdozoficznych z XIV wieku, E. Jung-Palczewska (red.),
Warszawa 2000, s. 299—304.
Jung-Palczewska E., Procedura „secundum imaginationem ” w sredniowiecznejfilozofii
przyrody, [w:] Ksiçga pamiqtkowa ku czci Profesora Zdzislawa Kuksewicza,
E. Jung-Palczewska (red.), Lódz 2000, s. 57-79.
Jung-Palczewska E., Siger z Brabancji - wprowadzenie, [w:] Wszystko to ze zdziwienia,
Antología tekstów fdozoficznych z XIII wieku, K. Krauze-B tacho wicz (red.),
s. 239-245.
Jung-Palczewska E., Tomasz Bradwardine — wprowadzenie, [w:] Wszystko to ze zdzi-
wienia. Antología..., E. Jung-Palczewska (red.), s. 287-291.
Jung-Palczewska E., Wilhelm Ockham — wprowadzenie, [w:] Wszystko to ze zdziwienia.
Antología tekstów fdozoficznych z XIV wieku, E. Jung-Palczewska (red.), s. 193—
202.
Jung-Palczewska E., Wilhelm Heytesbury - wprowadzenie, [w:] Wszystko to ze zdziwie-
nia. Antología..., E. Jung-Palczewska (red.), s. 319-322.
Jung-Palczewska E., Works by Richard Kilvington, „Archives d’historié doctrinale et
littéraire du moyen âge” 67, 2000, s. 184-225.
Jung E., Podkoñski R., Richard Kilvington on Proportions, [w:] Mathématiques et
théorie du mouvement (XIVe -XVf siècles), Joël Biard, Sabine Rommevaux (red.),
Villeneuve d’Ascq 2008, s. 81-101.
Juszkiewicz A.P., Historia matematyki w wiekach srednich, przel. Cz. Kulig, Krakôw
1969.
Kandulski M., Zarys historii matematyki. Od czasów najdawniejszych do sredniowie-
cza, Poznan 1983.
Knobloch E., Galileo and Leibniz: Different Approaches to Infinity, „Archive for
a History of Exact Sciences” 54(1999), s. 87-99.
Koyré A., Etudes galiléennes, 1.1, Paryz 1939.
Koyré A., Od zamkniçtego swiata do nieskohczonego wszechswiata, Gdansk 1998.
K. Krauze-Bîachowicz, Filozofia XIII wieku, [w:] Wszystko to ze zdziwienia. Antología
tekstów fdozoficznych z XIII wieku, K. Krauze-Blachowicz (red.), Warszawa 2002,
s. xm-Lix.
Kretzmann N., Adam Wodeham’s Anti-Aristotelian Anti-Atomism, „History of Philoso-
phy Quaterly” 1 ( 1984), s. 381 -398.
Kretzmann N., Richard Kilvington and the Logic of Instantaneous Speed, [w:] Studi sul
XIV secolo in memoria di Anneliese Maier, A. Maierù, A. Paravicini-Bagliani
(red.), Rzym 1981, s. 143-178.
Ksiçga pamiqtkowa ku czci Profesora Zdzislawa Kuksewicza, E. Jung-Palczewska (red.),
Lódz 2000.
163
Kuksewicz Z., Awerroizm laciñski trzynastego wieku. Nonkonformistyczny obraz swiata
i czlowieka w sredniowieczu, Warszawa 1971.
Lloyd G.E.R., Nauka grecka po Arystotelesie, przel. J. Lesiñski, Warszawa 1998.
Livesey S.J., William of Ockham, the Subalternate Sciences, and Aristotle s theory of
metabasis, „British Journal for the History of Science” 18 (1985), s. 127-145.
Lohr Ch., Medieval Latin Aristotle Commentaries. Authors: Narcissus-Wigelmus, „Tra-
ditio” 28(1972), s. 281-396.
Longeway J.L., Heytesbury William, [w:] The Routledge Encyclopedia of Philosophy,
t. 4, London-New York 1998, s. 419—421.
Longeway J.L., William Heytesbury, [w:] The Stanford Encyclopedia of Philosophy
(Spring 2003 Edition), Edward N. Zalta (red.),
URL = http://plato.stanford.edu/archives/spr2003/entries/heytesbury/ .
Lukowski P., Paradoksy, Lodz 2006.
Maier A., Ausgehendes mittelalter. Gesammelte aufsätze zur geistesgeschichte des 14.
Jahrhunderts, t. I, Roma 1964.
Mathematics and its Applications to Science and Natural Philosophy in the Middle
Ages, E. Grant, J.E. Murdoch (red.), New York, 1987.
Mathématiques et théorie du mouvement (XIVe - XVIe siècles), Joël Biard, Sabine
Rommevaux (red.), Villeneuve d’Ascq 2008.
The Metaphysics and Natural Philosophy of John Buridan, J.M.M.H. Thijssen, J. Zupko
(red.), Leiden-Boston-Köln 2001.
Michalski K., La physique nouvelle et les differents courants philosophiques au XIV s.,
„Bulletin International de l’Académie Polonaise des Sciences et de Lettres, Classe
d’Historie et de la Philosophie 1927”, 7-10, Cracoviae 1928, s. 93-164.
Michalski K., Prqdy füozoficzne w Oksfordzie i Paryzu XIV w.y [w:] Filozofîa wiekôw
srednich, Krakôw 1997, s. 139-141.
Michatowska M., Czy mqdry jest roztropny? Roztropnosc i wiedza mor alna wobec
dzialah woli w komentarzu do ‘Etyki nikomachejskiej ’ Ryszarda Kilvingtona,
„Przeglqd Tomistyczny” XVI(2010), s. 291 -306.
Michalowska M., Jak wyliczyc cnotç? Ilosciowe ujçcie cnot w „Kwestiach do Etyki”
Ryszarda Kilvingtona, „Przeglqd Filozoficzny. Nowa Seria” 83 (3/2012). s. 459-474.
Michalowska M., Kilvington s use of physical and logical arguments in ethical dilem-
mas, „Document! e studi sulla tradizione filosófica medievale” 22(2011), s. 465-
492.
Michalowska M., Richard Kilvington s ‘Quaestiones super libros Ethicorum : Is the
Virtue of Prudence a Moral Habit? (zawiera edycjç krytyczn^ kwestii: Utrum pru-
dentia sit habitus cum recta ratione activus circa hominis bona et mala „Bulletin
de philosophie médiévale” 53 (2011), s. 233-282.
Molland A.G., An Examination of Bradwardine s Geometry, „Archive for History of
Exact Sciences” 19(1978), s. 113-175.
Molland A.G., Continuity and Measure, Miscellanea Mediaevalia, Band 16/1(1983),
s. 132-144.
Morris R., Krótka historia nieskoñczonosci. Achilles i zóbv w kwantowym wszechswie-
cie, przel. J. Kowalski-Glikman, Warszawa 1999.
Murawski R., Filozofîa matematyki. Antología tekstów klasycznych, Poznan 1994.
Murawski R., Filozofîa matematyki - zarys dziejów, Poznan 1994.
Murdoch J.E., Aristotle on Democritus s Argument Against Infinite Divisibility in De
generatione et corruptione, Book /, Chapter 2, [w:] The Commentary Tradition on
164
Aristotle s De generatione et corruptione, Ancient, Medieval, and Early Modern,
J.M.M.H. Thijssen, H.A.G. Braakhuis (red.), Tumhout 1999, s. 87-102.
Murdoch J.E., Atomism and motion in the fourteenth century, [w:] Transformation and
Tradition in the Sciences, E. Mendelsohn (red.), New York 1974, s. 45-66.
Murdoch J.E., From Social into Intellectual Factors: an Aspect of the Untary Character
of Late Medieval Learning, [w:] The Cultural Context of Medieval Learning,
J.E. Murdoch, E.D. Sylla (red.), Dordrecht 1975, s. 271-339.
Murdoch J.E., Geometry and the Continuum in the Fourteenth Century: A Philosophical
Analysis of Thomas Bradwardine’s Tractatus de continuo (nieopublikowana roz-
prawa doktorska), Madison 1957.
Murdoch J.E., Henry of Harclay and the Infinite, [w:] Studi sulXIVsecolo in memoria di
Anneliese Maier, A. Maierù, A. Paravicini Bagliani (red.), Roma 1981, s. 219-261.
Murdoch J.E., Infinity and Continuity, [w:] The Cambridge History of Later Medieval
Philosophy, N. Kretzmann, A. Kenny, J. Pinborg (red.), Cambridge 1982, s. 564-
592.
Murdoch J. E., Mathesis in philosophiam scholasticam introducta: The Rise and Devel-
opment of the Application of Mathematics in Fourteenth-Century Philosophy and
Theology, [w:] Arts Libéraux et Philosophie au Moyen Âge, Actes du Quatrième
Congrès International de Philosophie Médiévale, Montreal/Paris 1969, s. 215-254
Murdoch J.E., The Medieval Euclid: Salient Aspects of the Translations of the „Ele-
ments” by Adelard of Bath and Campanus of Novara, „Revue de Synthese”
49(1968), s. 70-93.
Murdoch J.E., The Medieval Language of Proportions: Elements of the Interaction with
Greek Foundations and Development of New Mathematical Technique, [w:]
Scientific Change, A.C. Crombie (red.), Londyn 1963, s. 237-271.
Murdoch J.E., Naissance et Développement de P Atomisme au Bas Moyen Âge Latin,
„Cahiers d’études médiévales 11 : La science et la nature: théories et pratiques”,
Montreal-Paris 1974, s. 1-30.
Murdoch J.E., Pierre Duhem and the History of Late Medieval Science and Philosophy
in the Latin West, [w:] Gli studi di filosofia medievale fra otto e novecento, R. Im-
bach, A. Maierù (red.), Roma 1991, s. 153-302.
Murdoch J.E., Thomas Bradwardine: Mathematics and Continuity in the Fourteenth
Century, [w:] Mathematics and its Applications to Science and Natural Philosophy
in the Middle Ages, E. Grant, J. E. Murdoch (red.), New York, 1987, s. 103-137.
Murdoch J.E., William of Ockham and the Logic of Infinity and Continuity, [w:] Infinity
and Continuity in Ancient and Medieval Thought, N. Kretzmann (red.), New York
1982, s. 165-206.
Murdoch J.E., J.M.M.H. Thijssen, John Buridan on Infinity, [w:] The Metaphysics and
Natural Philosophy of John Buridan, J.M.M.H. Thijssen, J. Zupko (red.), Leiden-
Boston-Köln 2001, s. 127-150.
La nouvelle physique du XIVe siede (Biblioteca di Nuncius, Studi e Testi XXIV),
Stefano Caroti, Pierre Souffrin (red.), Firenze 1997.
Olszewski M., Ruszczyhski J., Tomasz z Akwinu - wprowadzenie, [w:] Wszystko to ze
zdziwienia. Antologia tekstôw filozoficznych z XIII wieku, K. Krauze-Blachowicz
(red.), s. 180-188.
Pironet F., Sophismata, [w:] The Stanford Encyclopedia of Philosophy (Winter 2001
Edition), Edward N. Zalta (red.), URL = http://plato.stanford.edu/archives/win
2001 /entries/sophismata/ .
165
Placek T., Paradoksy ructot Zenona z Elei a labirynt kontinuum: „Achilles i zôbv”,
„Strzala”, „Stadion”, „FilozofiaNauki”Mr 1(17), Rok V, 1997, s. 65-77.
Podkonski R., Al-Ghazali ’s ‘Metaphysics as a Source of Anti-atomistic Proofs in John
Duns Scotus, [w:] Wissen über Grenzen. Arabisches Wissen und lateinisches Mit-
telalter, A. Speer, L. Wegener (red.) „Miscellanea Mediaevalia” 33,2006, s. 612-625.
Podkonski R., Richard Kilvington „ Utmm continuum sit divisibile in infinitum ” - an
edition, „Mediaevalia Philosophica Polonorum” XXXVl(II), 2007, s. 120-175.
Podkonski R., Thomas ßradwardine s critique of ‘Falsigraphus ’s ’ concept of actual
infinity, „Studia Antyczne i Mediewistyczne”, 1(2003), s. 141-154.
Poorter A. de, Les Questiones super Libros Sententiarum de Richardi de Killington
à la Bibliothèque de Bruges, „Revue Néo-Scolastique de Philosophie” numéro 30,
vol. 18 (1928), s. 241. G. Reale, Historia filozofii starozytnej, t. I, Lublin 1993.
Reale G., Historia filozofii starozytnej, 1.1, Lublin 1993.
Rosiak M., Analiza i formalizacja husserlowskiej teorii calosci i czçsci, Lodz 1995.
The Routledge Encyclopedia of Philosophy, E. Craig (red.), vol. 1-9, London-New
York 1998.
Russo L., Zapomniana rewolucja. Grecka mysl naukowa a nauka nowoczesna, Krakow
2005.
Scientific Change, A.C. Crombie (red.), Londyn 1963.
Schabel Ch., Gregory of Rimini, [w:] The Stanford Encyclopedia of Philosophy (Fall
2001 Edition), E. N. Zalta (red.), URL = http://plato.stanford.edu/archives/fall
2001 /entries/gregory-rimini/ .
Smith K., Ockham ’s Influence on Gregory of Rimini Natural Philosophy, “AuxZeôsiç”,
AKaôqjaaïKÔ éxoç 1996-97, Asdkcoçux (Leukozja) 1999, s. 107-142.
Spade P.V., Introduction, [w:] The Cambridge Companion to Ockham, P.V. Spade
(red.), s. 1-16.
Spade P.V., Insolubles, [w:] The Stanford Encyclopedia of Philosophy (Fall 2005 Edi-
tion), E.N. Zalta (red.), URL = http://plato.stanford.edu/archives/fall2005/entries
/insolubles/ .
Spade P.V., William of Ockham, [w:] The Stanford Encyclopedia of Philosophy (Fall
2002 Edition), E.N. Zalta (red.), URL = http://plato.stanford.edu/archives/fall
2002/entries/ockham/ .
Studi sul XIV secolo in memoria di Anneliese Maier, A. Maierù, A. Paravicini Bagliani
(red.), Roma 1981.
Sylla E.D., Bradwardine Thomas, [w:] The Routlege Encyclopedia of Philosophy,
E. Craig (red.), vol. 1, London-New York 1998, s. 863-867.
Sylla E.D., Compounding Ratios. Bradwardine, Oresme, and the first edition of New-
ton’s Principia, [w:] Transformation and Tradition in the Sciences. Essays in
Honor of I. Bernard Cohen, E. Mendelsohn (red.), Cambridge - Londyn - New
York, 1984, s. 11^13.
Sylla E.D., God, Indivisibles, and Logic in the Later Middle Ages: Adam Wodeham ’s
Response to Henry of Harclay, Medieval Philosophy and Theology 7(1998), s. 69-87.
Sylla E.D., The Oxford Calculators, [w:] The Cambridge History of Later Medieval
Philosophy, N. Kretzmann, A. Kenny, J. Pinborg (red.), Cambridge 1982, s. 540-
563.
Sylla E.D., Thomas Bradwardine’s „De continuo” and the Structure of Fourteenth-
Century Learning, [w:] Texts and Contexts in Ancient and Medieval Science,
E.D. Sylla, M. McVaugh (red.), Leiden-New York-Köln 1997, s. 148-156.
166
Zob. E.D. Sylla, Transmission of the New Physics of the Fourteenth Century from
England to the Continent, [ v:] La nouvelle physique du XIVe siecle (Biblioteca di
Nuncius, Studi e Testi XXIV), Stefano Caroti, Pierre Souffrin (red.), Firenze 1997,
s. 65-110.
Szabo A., The Beginnings of Greek Mathematics, Budapest 1978.
Texts and Contexts in Ancient and Medieval Science, E.D. Sylla, M. McVaugh (red.),
Leiden-New York-Koln 1997.
Thijssen Buridan on Mathematics, „Vivarium” 23(1985), s. 55-78.
Thijssen J.M.M.H., The Response to Thomas Aquinas in the Early Fourteenth Century:
Eternity and Infinity in the Works of Henry of Harclay, Thomas of Wilton and
William of Alnwick o. f m., [w:] The Eternity of the World in the Thought oj
Thomas Aquinas and his Contemporaries, J.B.M. Wissink (red.), Leiden-New
York-Kobenhavn-Koln 1990, s. 82-100.
Transformation and Tradition in the Sciences. Essays in Honor of I. Bernard Cohen,
E. Mendelsohn (red.), Cambridge - Londyn - New York, 1984.
Trapp D., Augustinian Theology of the 14th Century, „Augustiniana” 6(1956), s. 146—
273.
Trifogli C., Matter and Form in Thirteenth-Century Discussions of Infinity and Conti-
nuity,, [w:] The Dynamics of Aristotelian Natural Philosophy from Antiquity to the
Seventeenth Century, red. C. Leijenhorst, Ch. Ltithy. J.M.M.H. Thijssen, Leiden-
Boston-Kdln 2002, s. 169-187.
Varzi A., Mereology, [w:] The Stanford Encyclopedia of Philosophy (Fall 2004 Edi-
tion), E.N. Zalta (red.), URL = http://plato.stanford.edu/archives/fall2004/entries
/mereology / .
Weisheipl J., Curriculum of the Faculty of Arts at Oxford in the Early Fourteenth Cen-
tury, “Medieval Studies” 26(1964), s. 143-185.
Williams T., John Duns Scotus, [w:] The Stanford Encyclopedia of Philosophy
(Fall 2005 Edition), Edward N. Zalta (red.), URL = http://plato.stanford.edu/archi
ves/fal12005/entri es / duns-scotus/ .
Wilson C., William Heytesbury: Medieval Logic and the Rise of Mathematical Physics,
Madison 1960.
Wlodarczyk T., Roger Bacon - wprowadzenie, [w:] Wszystko to ze zdziwienia, Antolo-
gia tekstow filozoficznych z XIII wieku, K. Krauze-Btachowicz (red.), s. 59-64.
Wood R., Wodeham, Adam, [w:] The Routledge Encyclopedia of Philosophy, Edward
Craig (red.), t. 9, London-New York 1998, s. 773-776.
Wszystko to ze zdziwienia. Antologia tekstow filozoficznych z XIII wieku, K. Krauze-
Blachowicz (red.), Warszawa 2002.
Wszystko to ze zdziwienia. Antologia tekstow filozoficznych z XIV wieku, E. Jung-Pal-
czewska (red.), Warszawa 2000.
Zupko J., Jean Buridan, [w:] The Stanford Encyclopedia of Philosophy (Summer 2002
Edition), Edward N. Zalta (red.), URL = http://plato.stanford.edu/archives/summ
er2002/entries/buridan/ .
INDEKS OSÖB
Strony zaznaczone kursyw^wskazujq. odwotania do przypisöw
Adelard z Bath 72
Albert z Saksonii 65, 65, 84, 148, 149
Aleksander z Afrodyzji 27
Al-Ghazali (Algazel) 57
Alnwick, Wilhelm z (Gullielmus de Aln-
wick) 38-41, 47, 113, 115, 116, 120
Anzelm z Canterbury, sw. 43
Archimedes 20, 68, 68, 154
Arystoteles 11-16, 11-14, 18, 21, 27, 22,
22, 25-27, 2£, 29, 30, 32, 33, 34, 35-
37, 43, 44, 47, 52, 59, 61-63, 63, 65-
69, 74, 80, 84, 88-90, 90, 99, 110, 111,
120, 142, 143, 145, 146, 155
Augustyn, sw. 38, 106
Autrecourt, Mikolaj z 11, 145, 145, 152
Awerroes (Averroes, Ibn-Rushd) 18, 35,
68, 72, 72, 76, 87, 88, 91, 93, 106, 124
Bacon, Roger 21, 25, 28, 34, 34, 48, 51,
57,69, 103, 110, 121, 123, 127
Boczar, M. 22, 24
Boecjusz (Boetius A.M.S.) 74
Bonawentura, sw. (Bonaventura) 26-29,
26, 28
Bonet, Nicholas 127
Bradwardine, Tomasz 9, 31, 31, 37, 59,
59, 62, 63, 66, 70, 76, 99, 111-113,
120, 121-128, 121, 127, 128, 131-135,
134, 135, 138, 139, 139, 141-145, 151,
152
Buckingham Tomasz 127
Burley, Walter 139
Burydan, Jan (Johannes Buridanus) 84,
90, 142-149, 142, 143, 147-149, 151,
152
de Bury, Ryszard (biskup) 62
Campanus z Novary, patrz Johannes Cam-
panus z Novary
Cantor, Georg 99
Chatton, Waiter 37, 37, 47, 115, 120
Copleston, F. 21
Courtenay, W.J. 119, 139
Crombie, A.C. 19, 152
Davenport, A.A. 127
Demokryt 8, 12, 16, 69
Drake, S. 73
Duhem, P. 7, 60, 140, 142, 142, 145, 148,
148
Duns Szkot, Jan (Johannes Duns Scotus)
9, 35, 51-57, 51-53, 56, 57, 59, 69, 70,
75, 77, 86, 103, 107, 113, 121, 123,
151
Edward 111 (krol Anglii) 62
Einstein, Albert 153
Epikur 8
Euklides (Euclides) 8, 9, 18, 20, 23, 31,
37, 46, 51-53, 52, 53, 55, 68, 68, 70-
72, 71, 74, 75, 78, 81, 81, 86, 87, 97,
107, 107, 121, 123-125
Filoponus 27
Galileusz (Galileo Galilei) 7, 9, 99, 134,
153,155
Grosseteste, Robert 19-25, 19, 21-23, 28,
30, 32, 35, 36, 47, 57, 102, 103, 111,
151,152
Grzegorz z Rimini (Gregorius de Arimino)
65, 65, 139-145, 139-141, 145
Hallamaa, O. 136
Barclay, Henryk z (Henricus de Harclay)
9, 17-19, 77, 21, 23, 25, 28-40, 30,
47^19, 47, 54, 56, 57, 57, 115, 117,
118, 120
Henryk z Gandawy 105
Hesse, Benedykt 148, 149
Heytesbury, Wilhelm 62, 65, 84, 138, 139
168
ldzi Rzymianin 34, 37
Jan z Mirecourt 65, 65, 145
Jan z Tynemouth (Johannes de Tinemue)
68
Johannes Campanus z Novary 71, 12, 74,
81, 81, 82, 84, 125, 136
Johannes Marcilii Inguen 148
Jordanus Nemorarius 74
Jung (-Palczewska), E. 18, 61, 103, 112,
119
Kepler, Johannes 7
Kilvington, Ryszard 9, 12, 18, 37, 57, 59-
61, 61-63, 63-113, 65, 67, 68, 72, 76,
83, 85, 86, 98, 101-103, 105, 107, 110,
119-121, 119, 123-131, 127-129,
133-142, 134-136, 138, 139, 142, 143,
144-147, 146, 149, 151, 152, 152, 154
Komentator, patrz Awerroes
Kopemik, Mikolaj 7
Kretzmann, B.E. 60
Kretzmann, N. 60, 63, 64, 101
Leibniz, Georg Wilhelm 99, 113
Lesniewski, Stanislaw 99
Leucyp (Leukippos) 8, 12, 16, 69
Livesey, S.J. 21
Lohr, Ch. 60
Lombard, Piotr 26, 45, 52, 61-63, 66, 66,
126, 135, 136, 139, 145
Lukrecjusz (Titus Lucretius Cams) 27
Maier, A. 60
Maior, Jan (Johannes Maior) 115, 149, 149
Marsyliusz z Inghen 65, 148, 148
Michalski, K. 60, 127
Michalowska, M. 61
Mikolaj z Kuzy, (Nicolaus de Cusa) 90,
153-155
Molland, A.G. 152
Murawski, R. 8, 154
Murdoch, J.E. 8, 9, 17, 24, 27, 33, 38, 42,
57, 59, 62, 68, 72, 112, 120, 121, 123,
142
Neugebauer, O. 60
Newton, Izaak 1, M3, 113
Ockham, Wilhelm (Gullielmus de Ock-
ham) 9, 12, 16, 21, 41-51, 41-47, 51,
53, 57, 59, 61, 69, 70, 76, 86-89, 92,
97, 103, 104, 110, 115, 115, 118-120,
122, 128, 139-142, 144, 145
Oresme, Mikolaj (Nicole Oresme) 95,
112, 152
Piotr Jana Olivi 28
Platon (historyczny) 12, 99
Platon (postac w przykiadach) 64, 135
de Poorter, A. 60
Proklos (Proclus) 27
Roseth Roger 62, 65, 135-138, 136, 145
Russell, Bertrand 106
Siger z Brabancji 26, 26
Smith, K. 139
Sokrates (postac w przykiadach) 64, 100,
135
Stagiryta, patrz Arystoteles
Swineshead, Ryszard 65, 95, 112, 126,
152
Syila, E.D. 14,37, 40, 113, 115, 119, 120,
120, 138, 139, 148
Tempier Stefan (Etienne, biskup) 28
Thijssen, J.M.M.H. 29, 30, 142, 142, 148,
148
Tomasz z Akwinu, sw. 26, 26, 27, 28, 29,
30
Trapp, D. 60
Wilson, C. 60
Wodeham, Adam (de) 9, 62, 65, 113, US-
120, 115, 119, 135, 138, 139
Wood, RU 19
Zenon z Elei 14, 15, 80, 120
INDEKS POJ^C
Arytmetyka 75, 148
Atom 8, 13-14, 17, 19, 24, 27, 30-35, 37,
43^4, 49-50, 52, 57, 76, 80-81, 84,
102-103, 115, 118, 121, 123-125, 152,
154-155
Atomizm 8-9, 5,16-18, 27, 31, 33, 34,
37-39, 41—42, 47-48, 51-52, 54-55,
57,66, 69,87, 102, 115, 117-123, 120,
141, 143-144, 148, 151, 752, 154
Biegun sfery gwiazd stalych 143
Bóg 24, 31, 32, 39, 106, 116, 129, 133,
144, 154
Calculationes, patrz Rachunek proporcji
Calóse 14,32,33, 100, 144
Chwila 102-103, 115, 124, 152
Cialo 78, 80, 90, 109, 131-132, 143
Cinglóse 81, 86
Coincidentia oppositorum 154
Creatio ex nihilo 26, 26
Czas (jako kontinuum) 15, 103
Cz?sc 15-16, 33, 102, 103, 118-119, 140,
144; cz. proporcjonalna 43-45, 93-94,
97-98, 101-102, 106, 108-109, 128-
131, 129, 135-137, 144-147, 747; re-
lacja cz. calóse 45, 46, 53, 92, 97, 99-
101, 102, 129, 141-143, 144; wszyst-
kie cz. distributive 101, 141, 144;
wszystkie cz. collective 101, 141, 144
Definicja: klasyczna def. prawdy 109; ko-
herencyjna def. prawdy 110
Denar 133-134
Dowód ontologiczny 43
Dusza 131-132
Etyka 61, 111-112
Falsigraphus 128
Figura (geometryczna) 103
Filozofia przyrody 7, 11-12, 17-18, 20,
22, 25-26, 36, 47, 59, 60-61, 62, 63,
67, 72, 81, 103, 104-105, 107, 110-
111, 113, 113, 120-121, 123, 138,
147-148, 151-152, 752, 155
Filozofia scholastyczna 8, 90, 104
Fizyka 7, 99, 152, 753; „Nowa fizyka”
138
Geometría 9, 18, 20-21, 35, 38, 48, 51-
52, 55, 57, 57, 69, 72, 75-76, 90, 107,
109, 113, 120, 121, 123, 141, 143,
147-148, 151, 753
Granica 13, 44, 75, 93, 109, 752; g. we-
wn^trzna 94; g. zewn^trzna 94, 109,
124,147
Harmonika 120
indivisibile, patrz Atom
Insolubilia 98
Izomortlzm wielkosci ci^glych 14, 35
Katoptryka 20
K^t 54, 82, 103; k. ostry 85; k. prosto-
liniowy 82, 85, 125, 126, 736; k. prosty
53, 84, 85, 126; k. stycznosci (angulus
contingentiae) 81-86, 81, 102, 107,
124-126, 736
Kolumna, patrz Wal ec
Kolo 88, 88 „Kola Arystotelesa” 155
Konceptualizm 152
Kontinuum (wielkosc cingla) 9, 12-16, 72,
19, 22, 24, 31, 34-35, 36, 41, 43, 47,
52, 57, 59, 66-67, 69, 75, 78, 81, 86,
90, 93, 99, 101, 103-104, 107, 109,
113, 115, 118-120, 123, 125, 128, 137,
140-141, 144, 147, 153, 155
Korona 131, 134, 134
170
Kres, patrz Granica
Ksi^zyc 27, 30, 46, 133
Liczba 38, 47, 72, 137, 144; L naturalna
134
Linia 14, 23, 93, 103, 106, 115, 154, 154;
1. krzywa 89; 1. hikowa 82, 85, 125; 1.
prosta 20, 82, 89, 98, 125; 1. spiralna
(linea girativä) 90-97, 102, 107, 109,
135, 135, 136, 137, 142, 145-149, 147,
151
Logika 110, 115, 119-120, 123, 137-138,
140; 1. terministyczna 138
Laska (boska) 135
Matematyka 8, 18-19, 21-22, 25, 28, 33,
47, 51-52, 51, 54, 57, 59-60, 67-69,
68, 71, 81, 89-90, 100, 103-105, 108,
110, 112, 113, 120, 123, 137, 148, 153,
153
Materia 90, 105, 143
Mereologia 99
Metabasis 21,47
Metafizyka 67, 100, 148; „m. swiatla” 19
Miara 23-24
Minimum naturale 34, 36
Mistyka 25
Nauki posrednie (scientiae mediae) 21
Nicosc 13
Nieskonczonosc 12, 15, 23, 26, 29-30, 41,
57, 66, 85, 90, 90, 94-95, 95-96, 134,
138, 142, 149, 152-155, 154; n. aktu-
alna 16, 18, 22, 27, 29, 37, 43^17, 45,
57, 84, 85, 90, 92, 97, 99, 100, 104,
109, 115, 119, 127-129, 127-128, 131,
133, 136-137, 139-140, 143-144,
146-147; n. potencjalna 16, 16, 29, 44,
84, 125; n. kategorematyczna 84, 100-
101, 126, 137, 139-140, 142; n. ‘pod
pewnym wzgledern’ {infinitum secun-
dum quid) 98, 127-128, 127, 129, 140;
n. synkategorematyczna 84, 127, 137,
139-140, 143, 147; nieskonczonosc
‘pod wzgl^dem ilosci’ (infinitum di-
scretive) 92, 98, 129, 131-132; nie-
skonczonosc ‘pod wzgl^dem jakosci
(infmiíum qualitative) 98; nieskonczo-
nosc ‘pod wzgl^dem wymiarów’ (infi-
nitum quantitative) 92, 98, 106, 129; n.
‘po prostu’ (infmitum simpliciter) 98,
126-128, 127-129, 140; nieskonczone
mnogosci 8, 15, 22, 25, 27, 29, 37, 44,
47, 98, 109, 128, 129, 130-131, 133,
140, 143-144; nierówne nieskoñczono-
sci 23, 23, 25, 27, 27, 30, 30, 46-47;
nieskoñczony podziat kontinuum 13-
15, 36-37, 59, 67, 69, 81, 90-92, 97,
99, 104, 106-108, 118-119, 123, 129,
136, 137, 147, 155
Niewspólmiemosc (przek^tnej i boku
kwadratu) 33-34, 48, 51, 55, 57, 70,
73, 74, 75, 122, 141, 143
Odcinek 31-34, 38-40, 45, 48-50, 52-55,
57, 70, 72, 76-77, 98, 108, 116-117,
121, 124, 129-130, 129, 146-147, 147
Okr^g 77, 81, 82, 86-88, 143, 144, 154;
okr^gi wspólsrodkowe 49-53, 69, 122,
141, 144
Okreslenie proporcji (denominatió) 73-74
Oksfordzcy Kalkulatorzy 8, 9, 61, 138
Opór (jako warunek ruchu) 65, 72-73
Optyka 20, 20, 78
Palee 100
Papiez 132
Paradoks 14, 80, 89, 97, 98-99, 120, 130,
151,155
Petitio principii 123, 151
Plaszczyzna 12, 76-77, 76, 80, 107, 115
Powierzchnia, patrz Ptaszczyzna
Pótokr^g 87-88, 122, 141, 144
Pótkole 88, 88
Prawa geometrii a atomizm 35, 38, 148; p.
geometrii a prawa przyrody 35, 36,
104, 106, 148, 151,153
Pr^dkosc 72; p. chwilowa 63
Proporcja 31, 70-74, 107, 111; p. cingla
(continua proportio) 70, 70, 75; p. nie-
skoñczona 22, 30, 30, 80, 85^86, 125-
126, 126, 136, 139; p. podwojona
(proportio duplicata) 70, 71, 73-74; p.
podwójna (proportio dupla) 73, 75; p.
wymiema 55; potowa proporcji (me-
171
dietas proportionis) 71, 73—74; propor-
cja sify do oporu w ruchu 73
Pseudarium 83
Punkt 8, 13-14, 20, 22-25, 31, 33, 40-41,
48-57, 75-80, 94, 102, 109, 116, 118,
147, 752; punkty stykaj^ce si? bezpo-
srednio (immediate) 31-32, 38-39, 51,
55-56, 76-78, 116-117, 121; punkty
stykaj^ce si? posrednio (mediate) 24,
32, 55, 123
Rachunek proporcji 8-9, 110-113, 775,
151
Rachunek rozniczkowy 113
Rationes mathematicae 119, 148
Realizm (poj?ciowy) 152
Rewolucja naukowa 7
Rownania ruchu 7 7
Rownik niebieski (circulus aequinoctalis)
143
Rownosc 86-87, 105; r. per accidens 89;
r. per se 89; r. rozumiana ogolnie (com-
muniter) 90, 105; r. rozumiana scisle
(proprie) 90, 105
Rownolicznosc 99, 129, 133-134, 134,
151
Ruch 8, 63, 65-66, 72, 75, 89, 112; r.
jednostajnie przyspieszony 63; r. lo-
kalny 64, 111, 120; r. opozniony 65;
„nowa regula ruchu” 112
Secundum imaginationem 97, 104, 133,
136
Sfera 76
Sieczna okr?gu 84
Sila (dziataj^ca w ruchu) 65, 73
Slohce 27,30, 45-46, 133
Sofizmat 60, 63-65, 67, 85, 100, 101, 103,
135, 136, 138, 138, 151
Stosunek liczbowy 73, 110
Stozek cienia 78-80, 102, 109; s. powie-
trza 98, 107-108
Styczna do okr?gu 81, 83-84
Supozycja 64; s. okreslona (determinata)
40, 42, 116; s. personalna 40; s. zupel-
nie nieokreslona (confusa tantum) 40-
41, 116-117
Srednica 82, 122, 141
Swiatlo {lux, lumen) 20, 80; promienie
áwiatla 78
Teologia 36, 38, 111-112, 120, 120, 154
Termin kategorematyczny 64, 64, 85; t.
synkategorematyczny 64, 64, 85
Trójk^t 78, 154; t. równoboczny 35; t.
równoramienny 141, 154
Walec {corpus columnare) 91-96, 136—
137, 145-146, 148-149
W^z 149
Wiecznosc swiata 8, 77, 19, 25-26, 28-30,
28, 37, 37, 131, 133, 143; w. swiata a
parte ante 26, 27-29, 45; w. swiata a
parte post 28-29, 45
Wielkosc 41—43, 75; w. cingla, patrz Kon-
tinuum; w. niepodzielna, patrz Atom;
w. nieskohczenie mala 43; w. niewy-
miema 74
Wielok^t 154-155,154
Wszechwiedza boska 31-32, 36
Zasada ci^glosci 81-82
Zbiór nieskoñczony 43-44, 99, 106, 129-
134, 134, 141, 144, 151
Zdanie 101, 117; z. temporalne 64; z. wa-
runkowe 64
Zmiana 63, 65, 80
Summary
Fourteenth-century English thinkers forming the Oxford Calculators’ School
are recognized by historians of medieval science as responsible for introducing
mathematical tools of scientific analysis into Aristotelian philosophy of nature.
In fact, those thinkers employed in their works mainly the theory of ratios, de-
rived from the book V of Euclid’s „Elements”, in the context of description of
local motion. Eventually, Oxford Calculators reformulated Aristotle’s „rules of
motion” from the book VII of his „Physics”, giving them logical and mathe-
matical consistency. Also, they developed the so-called „mean speed theorem” -
the proper description of unifonnly accelerated (or decelerated) motion, em-
ployed later by Galileo in his physical deliberations.
However, in the works of Richard Kilvington and Thomas Bradwardine, the
founders of the Oxford Calculators’ School one finds also either explicit or im-
plicit references to other parts of Euclid’s treatise. Both these thinkers presented
geometrical arguments in the context of the debate on the existence of indivisi-
bles. The debate on indivisibles began after the then Chancellor of Oxford Uni-
versity, Henry of Harclay, postulated the existence of infinitely small atoms or
points that constitute every real thing. This postulate was a direct consequence
of his acceptance of the existence of actual and different infinities in the created
world. Henry of Harclay developed this theory of infinity taking part in the
other important medieval debate, namely the debate on the eternity of the world.
The special advantage of Harclay’s atomism was that his theory was deeply
rooted in a philosophical tradition, especially Aristotle’s and Robert Grosse-
teste’s opinions, while at the same time it contradicted some basic, commonly
accepted laws of logic and geometry (e.g. „A whole is greater than its parts”).
As many more, traditionally-minded, contemporary philosophers found it im-
possible to accept, Harclay and his followers immediately encountered many
critics. The first adversaries of Harclay: William of Alnwick, Adam Wodeham
and William Ockham employed the then-popular terminist logic in order to re-
fute the atomistic theory of nature. Yet, in his critiques, Ockham also used geo-
metrical proofs, borrowed in fact from John Duns Scotus. Scotus’s geometrical
proofs against indivisibilism are a perfect testimony to his „subtle” intellect as
they reveal deep knowledge and understanding of Euclid’s „Elements” as well
as a great imagination behind them.
All the geometrical proofs against atomism that appear in Thomas Brad-
wardine’s „Tractatus de continuo” can be seen as either repetitions or simplifi-
cations of John Duns Scotus’s arguments. Yet Richard Kilvington in his ques-
tion Utrum continuum sit divisibile in infinitum, from his commentary on Aris-
totle’s „On generation and corruption”, presented original and ingenious con-
structions. In fact, he did not strive to prove atomism false here. Instead, he
traced all the inconsistencies that emerge when adopting Euclidean geometry,
174
and mathematics in general, to Aristotelian natural philosophy. In Kilvington’s
question one finds, for example, the analysis of the angle of contingency (an-
gulus contingentiae), formed by the circumference of a circle and the line tan-
gent to it, that seems at the first sight to be smaller than any angle formed by
straight lines, and thus indivisible; and also to not meet the Euclidean law of
continuity. In the course of his analyses Kilvington observed also that some
commonly used terms — like equal’, have different meaning and consequences
from the point of view of a mathematician and of a natural philosopher. Eventu-
ally, he pointed out that physical phenomena cannot be adequately described
with mathematical tools and procedures, as in natural world there are to many
factors to be taken into consideration on one hand, and in geometry one can
carry out some procedures that are physically impossible, on the other. For ex-
ample, theroretically we can divide any thing into all its infinite parts, but physi-
cally it is obviously impossible. Therefore, concluded Richard Kilvington,
mathematics can be seen only as another, after logic, useful tool of theoretical
analyses within natural philosophy, but not its „language”.
Discussing his question Utrum continuum sit divisibile in infinitum Richard
Kilvington, as it seems, recognized the debate on the existence of indivisibles to
be already concluded. However, his acceptance of infinite divisibility of any
real, or imaginable, quantity led him to develop the theory of infinity that for his
contemporaries was probably as unorthodox and unacceptable, as Harclay’s
atomism. In short, Kilvington accepted the existence of actual infinities in the
created world, what seems to be the direct inheritance of William of Ockham
theories. Like Ockham, he took the number of proportional parts of any contin-
uum as an example of actual infinity. With regard to the problem that led Har-
clay to accept atomism, and the one never in fact resolved by Ockham, that is
the existence of different infinities, Kilvington developed a surprisingly ingen-
ious theory. Establishing one-to-one correspondence between the elements of
infinite sets he stated that all created actual infinities are equal „in multitude”
(discretive). This does not imply, however, that infinities are necessarily equal
„in magnitude” {quantitative) or „in quality” (qualitative). That means that two
created infinites can be at once equal and unequal, with respect to multitude of
their parts, and their dimensions, respectively.
Although Richard Kilvington managed, as it seems, to reconcile this way the
opposite points of view with respect to infinities, his solution remained almost
unnoticed by his contemporaries and followers. Apparently, the only thinker
aware of his theory was Thomas Bradwardine, who most probably is responsi-
ble for this situation. Being already the recognized and respected theologian, in
his monumental work ,,De causa Dei” Bradwardine ridiculed Kilvington’s the-
ory of infinities drawing the most paradoxical consequences from it. It is worth
noting here, however, that the modem theory of infinite sets, developed in the
end of nineteenth century by Georg Cantor, accepts similar consequences as its
exceptional features.
6ñyensche
Síaatsbíhiíothek
München
|
any_adam_object | 1 |
author | Podkónski, Robert ca. 20./21. Jh |
author_GND | (DE-588)1046733524 |
author_facet | Podkónski, Robert ca. 20./21. Jh |
author_role | aut |
author_sort | Podkónski, Robert ca. 20./21. Jh |
author_variant | r p rp |
building | Verbundindex |
bvnumber | BV044365017 |
contents | Bibliografie Seite 157-166. Indeksy |
ctrlnum | (OCoLC)1005713356 (DE-599)BVBBV044365017 |
edition | Wydanie I |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03372nam a2200577 c 4500</leader><controlfield tag="001">BV044365017</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180807 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170622s2016 |||| |||| 00||| pol d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9788380882713</subfield><subfield code="9">978-83-8088-271-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">8380882717</subfield><subfield code="9">83-8088-271-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9788380882720</subfield><subfield code="9">978-83-8088-272-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">8380882725</subfield><subfield code="9">83-8088-272-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1005713356</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044365017</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">pol</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Podkónski, Robert</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1046733524</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ryszard Kilvington</subfield><subfield code="b">nieskończoność i geometria</subfield><subfield code="c">Robert Podkoński</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Wydanie I</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Łódź</subfield><subfield code="b">Wydawnictwo Uniwersytetu Łódzkiego</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">174 Seite</subfield><subfield code="b">Diagramme</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Bibliografie Seite 157-166. Indeksy</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">Zusammenfassung in englischer Sprache</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Kilvington, Richard / (1302?-1361?) / krytyka i interpretacja</subfield><subfield code="2">jhpk</subfield></datafield><datafield tag="600" ind1="0" ind2="7"><subfield code="a">Richardus</subfield><subfield code="c">de Kilvington</subfield><subfield code="d">1305-1361</subfield><subfield code="0">(DE-588)118961144</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Filozofia przyrody / średniowiecze</subfield><subfield code="2">jhpk</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nieskończoność</subfield><subfield code="2">jhpk</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matematyka średniowieczna / filozofia</subfield><subfield code="2">jhpk</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Naturphilosophie</subfield><subfield code="0">(DE-588)4041408-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unendlichkeit</subfield><subfield code="0">(DE-588)4136067-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Richardus</subfield><subfield code="c">de Kilvington</subfield><subfield code="d">1305-1361</subfield><subfield code="0">(DE-588)118961144</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Unendlichkeit</subfield><subfield code="0">(DE-588)4136067-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Naturphilosophie</subfield><subfield code="0">(DE-588)4041408-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung BSB Muenchen 19 - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung BSB Muenchen 19 - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Literaturverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung BSB Muenchen 19 - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000003&line_number=0003&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Register // Personenregister</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung BSB Muenchen 19 - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000004&line_number=0004&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Register // Sachregister</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung BSB Muenchen 19 - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000005&line_number=0005&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029767564</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">001.09</subfield><subfield code="e">22/bsb</subfield><subfield code="f">09023</subfield><subfield code="g">41</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">001.09</subfield><subfield code="e">22/bsb</subfield><subfield code="f">09023</subfield><subfield code="g">438</subfield></datafield></record></collection> |
id | DE-604.BV044365017 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:50:54Z |
institution | BVB |
isbn | 9788380882713 8380882717 9788380882720 8380882725 |
language | Polish |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029767564 |
oclc_num | 1005713356 |
open_access_boolean | |
owner | DE-12 |
owner_facet | DE-12 |
physical | 174 Seite Diagramme 25 cm |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Wydawnictwo Uniwersytetu Łódzkiego |
record_format | marc |
spelling | Podkónski, Robert ca. 20./21. Jh. Verfasser (DE-588)1046733524 aut Ryszard Kilvington nieskończoność i geometria Robert Podkoński Wydanie I Łódź Wydawnictwo Uniwersytetu Łódzkiego 2016 174 Seite Diagramme 25 cm txt rdacontent n rdamedia nc rdacarrier Bibliografie Seite 157-166. Indeksy Zusammenfassung in englischer Sprache Kilvington, Richard / (1302?-1361?) / krytyka i interpretacja jhpk Richardus de Kilvington 1305-1361 (DE-588)118961144 gnd rswk-swf Filozofia przyrody / średniowiecze jhpk Nieskończoność jhpk Matematyka średniowieczna / filozofia jhpk Naturphilosophie (DE-588)4041408-5 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Unendlichkeit (DE-588)4136067-9 gnd rswk-swf Richardus de Kilvington 1305-1361 (DE-588)118961144 p Unendlichkeit (DE-588)4136067-9 s Naturphilosophie (DE-588)4041408-5 s Mathematik (DE-588)4037944-9 s DE-604 Digitalisierung BSB Muenchen 19 - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung BSB Muenchen 19 - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Literaturverzeichnis Digitalisierung BSB Muenchen 19 - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000003&line_number=0003&func_code=DB_RECORDS&service_type=MEDIA Register // Personenregister Digitalisierung BSB Muenchen 19 - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000004&line_number=0004&func_code=DB_RECORDS&service_type=MEDIA Register // Sachregister Digitalisierung BSB Muenchen 19 - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000005&line_number=0005&func_code=DB_RECORDS&service_type=MEDIA Abstract |
spellingShingle | Podkónski, Robert ca. 20./21. Jh Ryszard Kilvington nieskończoność i geometria Bibliografie Seite 157-166. Indeksy Kilvington, Richard / (1302?-1361?) / krytyka i interpretacja jhpk Richardus de Kilvington 1305-1361 (DE-588)118961144 gnd Filozofia przyrody / średniowiecze jhpk Nieskończoność jhpk Matematyka średniowieczna / filozofia jhpk Naturphilosophie (DE-588)4041408-5 gnd Mathematik (DE-588)4037944-9 gnd Unendlichkeit (DE-588)4136067-9 gnd |
subject_GND | (DE-588)118961144 (DE-588)4041408-5 (DE-588)4037944-9 (DE-588)4136067-9 |
title | Ryszard Kilvington nieskończoność i geometria |
title_auth | Ryszard Kilvington nieskończoność i geometria |
title_exact_search | Ryszard Kilvington nieskończoność i geometria |
title_full | Ryszard Kilvington nieskończoność i geometria Robert Podkoński |
title_fullStr | Ryszard Kilvington nieskończoność i geometria Robert Podkoński |
title_full_unstemmed | Ryszard Kilvington nieskończoność i geometria Robert Podkoński |
title_short | Ryszard Kilvington |
title_sort | ryszard kilvington nieskonczonosc i geometria |
title_sub | nieskończoność i geometria |
topic | Kilvington, Richard / (1302?-1361?) / krytyka i interpretacja jhpk Richardus de Kilvington 1305-1361 (DE-588)118961144 gnd Filozofia przyrody / średniowiecze jhpk Nieskończoność jhpk Matematyka średniowieczna / filozofia jhpk Naturphilosophie (DE-588)4041408-5 gnd Mathematik (DE-588)4037944-9 gnd Unendlichkeit (DE-588)4136067-9 gnd |
topic_facet | Kilvington, Richard / (1302?-1361?) / krytyka i interpretacja Richardus de Kilvington 1305-1361 Filozofia przyrody / średniowiecze Nieskończoność Matematyka średniowieczna / filozofia Naturphilosophie Mathematik Unendlichkeit |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000003&line_number=0003&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000004&line_number=0004&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029767564&sequence=000005&line_number=0005&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT podkonskirobert ryszardkilvingtonnieskonczonoscigeometria |