In pursuit of the traveling salesman: mathematics at the limits of computation
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton
Princeton University Press
2012
|
Schlagworte: | |
Beschreibung: | Includes bibliographical references and index "What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics--and it has defied solution to this day. In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W. R. Hamilton first defined the problem, and venturing to the furthest limits of today's state-of-the-art attempts to solve it. Cook examines the origins and history of the salesman problem and explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets. He looks at how computers stack up against the traveling salesman problem on a grand scale, and discusses how humans, unaided by computers, go about trying to solve the puzzle. Cook traces the salesman problem to the realms of neuroscience, psychology, and art, and he also challenges readers to tackle the problem themselves. The traveling salesman problem is--literally--a $1 million question. That's the prize the Clay Mathematics Institute is offering to anyone who can solve the problem or prove that it can't be done. In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem"-- |
Beschreibung: | xiii, 228 p. |
ISBN: | 9781400839599 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044159211 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 170217s2012 |||| o||u| ||||||eng d | ||
020 | |a 9781400839599 |c Online |9 978-1-4008-3959-9 | ||
035 | |a (ZDB-30-PAD)EBC802242 | ||
035 | |a (ZDB-89-EBL)EBL802242 | ||
035 | |a (OCoLC)774285465 | ||
035 | |a (DE-599)BVBBV044159211 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
082 | 0 | |a 511/.5 |2 23 | |
084 | |a QH 462 |0 (DE-625)141598: |2 rvk | ||
084 | |a SG 590 |0 (DE-625)143069: |2 rvk | ||
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
084 | |a SK 970 |0 (DE-625)143276: |2 rvk | ||
100 | 1 | |a Cook, William |d 1957- |e Verfasser |4 aut | |
245 | 1 | 0 | |a In pursuit of the traveling salesman |b mathematics at the limits of computation |c William J. Cook |
264 | 1 | |a Princeton |b Princeton University Press |c 2012 | |
300 | |a xiii, 228 p. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a "What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics--and it has defied solution to this day. In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W. R. Hamilton first defined the problem, and venturing to the furthest limits of today's state-of-the-art attempts to solve it. Cook examines the origins and history of the salesman problem and explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets. He looks at how computers stack up against the traveling salesman problem on a grand scale, and discusses how humans, unaided by computers, go about trying to solve the puzzle. Cook traces the salesman problem to the realms of neuroscience, psychology, and art, and he also challenges readers to tackle the problem themselves. The traveling salesman problem is--literally--a $1 million question. That's the prize the Clay Mathematics Institute is offering to anyone who can solve the problem or prove that it can't be done. In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem"-- | ||
648 | 7 | |a Geschichte 1800-2000 |2 gnd |9 rswk-swf | |
648 | 7 | |a Geschichte |2 gnd |9 rswk-swf | |
650 | 4 | |a Traveling salesman problem | |
650 | 4 | |a Computational complexity | |
650 | 0 | 7 | |a Travelling-salesman-Problem |0 (DE-588)4185966-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Travelling-salesman-Problem |0 (DE-588)4185966-2 |D s |
689 | 0 | 1 | |a Geschichte 1800-2000 |A z |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Travelling-salesman-Problem |0 (DE-588)4185966-2 |D s |
689 | 1 | 1 | |a Geschichte |A z |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-691-15270-7 |
912 | |a ZDB-30-PAD | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029566056 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804177268949385216 |
---|---|
any_adam_object | |
author | Cook, William 1957- |
author_facet | Cook, William 1957- |
author_role | aut |
author_sort | Cook, William 1957- |
author_variant | w c wc |
building | Verbundindex |
bvnumber | BV044159211 |
classification_rvk | QH 462 SG 590 SK 890 SK 970 |
collection | ZDB-30-PAD |
ctrlnum | (ZDB-30-PAD)EBC802242 (ZDB-89-EBL)EBL802242 (OCoLC)774285465 (DE-599)BVBBV044159211 |
dewey-full | 511/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.5 |
dewey-search | 511/.5 |
dewey-sort | 3511 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
era | Geschichte 1800-2000 gnd Geschichte gnd |
era_facet | Geschichte 1800-2000 Geschichte |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03356nmm a2200517zc 4500</leader><controlfield tag="001">BV044159211</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170217s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400839599</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4008-3959-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC802242</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL802242</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)774285465</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044159211</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 462</subfield><subfield code="0">(DE-625)141598:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SG 590</subfield><subfield code="0">(DE-625)143069:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 970</subfield><subfield code="0">(DE-625)143276:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cook, William</subfield><subfield code="d">1957-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">In pursuit of the traveling salesman</subfield><subfield code="b">mathematics at the limits of computation</subfield><subfield code="c">William J. Cook</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 228 p.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics--and it has defied solution to this day. In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W. R. Hamilton first defined the problem, and venturing to the furthest limits of today's state-of-the-art attempts to solve it. Cook examines the origins and history of the salesman problem and explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets. He looks at how computers stack up against the traveling salesman problem on a grand scale, and discusses how humans, unaided by computers, go about trying to solve the puzzle. Cook traces the salesman problem to the realms of neuroscience, psychology, and art, and he also challenges readers to tackle the problem themselves. The traveling salesman problem is--literally--a $1 million question. That's the prize the Clay Mathematics Institute is offering to anyone who can solve the problem or prove that it can't be done. In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem"--</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 1800-2000</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traveling salesman problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational complexity</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Travelling-salesman-Problem</subfield><subfield code="0">(DE-588)4185966-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Travelling-salesman-Problem</subfield><subfield code="0">(DE-588)4185966-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte 1800-2000</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Travelling-salesman-Problem</subfield><subfield code="0">(DE-588)4185966-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-691-15270-7</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PAD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029566056</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV044159211 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:45:23Z |
institution | BVB |
isbn | 9781400839599 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029566056 |
oclc_num | 774285465 |
open_access_boolean | |
physical | xiii, 228 p. |
psigel | ZDB-30-PAD |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Princeton University Press |
record_format | marc |
spelling | Cook, William 1957- Verfasser aut In pursuit of the traveling salesman mathematics at the limits of computation William J. Cook Princeton Princeton University Press 2012 xiii, 228 p. txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index "What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics--and it has defied solution to this day. In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W. R. Hamilton first defined the problem, and venturing to the furthest limits of today's state-of-the-art attempts to solve it. Cook examines the origins and history of the salesman problem and explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets. He looks at how computers stack up against the traveling salesman problem on a grand scale, and discusses how humans, unaided by computers, go about trying to solve the puzzle. Cook traces the salesman problem to the realms of neuroscience, psychology, and art, and he also challenges readers to tackle the problem themselves. The traveling salesman problem is--literally--a $1 million question. That's the prize the Clay Mathematics Institute is offering to anyone who can solve the problem or prove that it can't be done. In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem"-- Geschichte 1800-2000 gnd rswk-swf Geschichte gnd rswk-swf Traveling salesman problem Computational complexity Travelling-salesman-Problem (DE-588)4185966-2 gnd rswk-swf Travelling-salesman-Problem (DE-588)4185966-2 s Geschichte 1800-2000 z 1\p DE-604 Geschichte z DE-604 Erscheint auch als Druck-Ausgabe, Hardcover 978-0-691-15270-7 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cook, William 1957- In pursuit of the traveling salesman mathematics at the limits of computation Traveling salesman problem Computational complexity Travelling-salesman-Problem (DE-588)4185966-2 gnd |
subject_GND | (DE-588)4185966-2 |
title | In pursuit of the traveling salesman mathematics at the limits of computation |
title_auth | In pursuit of the traveling salesman mathematics at the limits of computation |
title_exact_search | In pursuit of the traveling salesman mathematics at the limits of computation |
title_full | In pursuit of the traveling salesman mathematics at the limits of computation William J. Cook |
title_fullStr | In pursuit of the traveling salesman mathematics at the limits of computation William J. Cook |
title_full_unstemmed | In pursuit of the traveling salesman mathematics at the limits of computation William J. Cook |
title_short | In pursuit of the traveling salesman |
title_sort | in pursuit of the traveling salesman mathematics at the limits of computation |
title_sub | mathematics at the limits of computation |
topic | Traveling salesman problem Computational complexity Travelling-salesman-Problem (DE-588)4185966-2 gnd |
topic_facet | Traveling salesman problem Computational complexity Travelling-salesman-Problem |
work_keys_str_mv | AT cookwilliam inpursuitofthetravelingsalesmanmathematicsatthelimitsofcomputation |