Ginzburg-Landau vortices:
Gespeichert in:
Körperschaft: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Beijing, China
Higher Education Press
c2005
|
Schriftenreihe: | Series in contemporary applied mathematics
5 |
Schlagworte: | |
Beschreibung: | "The "Ginzburg-Landau Vortices" School and Symposium ... was held during November 18-19, 2002 in Fudan University, Shanghai, China"--P. v Includes bibliographical references |
Beschreibung: | vii, 186 p. |
ISBN: | 9812562036 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044124655 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 170217s2005 |||| o||u| ||||||eng d | ||
020 | |a 9812562036 |9 981-256-203-6 | ||
035 | |a (ZDB-30-PAD)EBC296132 | ||
035 | |a (ZDB-89-EBL)EBL296132 | ||
035 | |a (OCoLC)476063560 | ||
035 | |a (DE-599)BVBBV044124655 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
082 | 0 | |a 532.0595 | |
110 | 2 | |a "Ginzburg-Landau Vortices" School and Symposium <2002, Fu dan da xue> |e Verfasser |4 aut | |
245 | 1 | 0 | |a Ginzburg-Landau vortices |c Haïm Brezis, Tatsien Li |
264 | 1 | |a Beijing, China |b Higher Education Press |c c2005 | |
300 | |a vii, 186 p. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series in contemporary applied mathematics |v 5 | |
500 | |a "The "Ginzburg-Landau Vortices" School and Symposium ... was held during November 18-19, 2002 in Fudan University, Shanghai, China"--P. v | ||
500 | |a Includes bibliographical references | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Singularities (Mathematics) | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Superconductors |x Mathematics | |
650 | 4 | |a Superfluidity |x Mathematics | |
650 | 4 | |a Differential equations, Nonlinear |x Numerical solutions | |
650 | 0 | 7 | |a Supraleitung |0 (DE-588)4058651-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Suprafluidität |0 (DE-588)4184132-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ginzburg-Landau-Gleichung |0 (DE-588)4157356-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Differentialgleichung |0 (DE-588)4205536-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 2002 |z Shanghai |2 gnd-content | |
689 | 0 | 0 | |a Ginzburg-Landau-Gleichung |0 (DE-588)4157356-0 |D s |
689 | 0 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Supraleitung |0 (DE-588)4058651-0 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Nichtlineare Differentialgleichung |0 (DE-588)4205536-2 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
689 | 3 | 0 | |a Suprafluidität |0 (DE-588)4184132-3 |D s |
689 | 3 | |8 5\p |5 DE-604 | |
700 | 1 | |a Brézis, H. |e Sonstige |4 oth | |
700 | 1 | |a Li, Daqian |e Sonstige |4 oth | |
912 | |a ZDB-30-PAD | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029531500 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804177208390975488 |
---|---|
any_adam_object | |
author_corporate | "Ginzburg-Landau Vortices" School and Symposium <2002, Fu dan da xue> |
author_corporate_role | aut |
author_facet | "Ginzburg-Landau Vortices" School and Symposium <2002, Fu dan da xue> |
author_sort | "Ginzburg-Landau Vortices" School and Symposium <2002, Fu dan da xue> |
building | Verbundindex |
bvnumber | BV044124655 |
collection | ZDB-30-PAD |
ctrlnum | (ZDB-30-PAD)EBC296132 (ZDB-89-EBL)EBL296132 (OCoLC)476063560 (DE-599)BVBBV044124655 |
dewey-full | 532.0595 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532.0595 |
dewey-search | 532.0595 |
dewey-sort | 3532.0595 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02825nmm a2200673zcb4500</leader><controlfield tag="001">BV044124655</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170217s2005 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812562036</subfield><subfield code="9">981-256-203-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC296132</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL296132</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)476063560</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044124655</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532.0595</subfield></datafield><datafield tag="110" ind1="2" ind2=" "><subfield code="a">"Ginzburg-Landau Vortices" School and Symposium <2002, Fu dan da xue></subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ginzburg-Landau vortices</subfield><subfield code="c">Haïm Brezis, Tatsien Li</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beijing, China</subfield><subfield code="b">Higher Education Press</subfield><subfield code="c">c2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">vii, 186 p.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in contemporary applied mathematics</subfield><subfield code="v">5</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"The "Ginzburg-Landau Vortices" School and Symposium ... was held during November 18-19, 2002 in Fudan University, Shanghai, China"--P. v</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singularities (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconductors</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superfluidity</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Nonlinear</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Supraleitung</subfield><subfield code="0">(DE-588)4058651-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Suprafluidität</subfield><subfield code="0">(DE-588)4184132-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ginzburg-Landau-Gleichung</subfield><subfield code="0">(DE-588)4157356-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Differentialgleichung</subfield><subfield code="0">(DE-588)4205536-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2002</subfield><subfield code="z">Shanghai</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ginzburg-Landau-Gleichung</subfield><subfield code="0">(DE-588)4157356-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Supraleitung</subfield><subfield code="0">(DE-588)4058651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Nichtlineare Differentialgleichung</subfield><subfield code="0">(DE-588)4205536-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Suprafluidität</subfield><subfield code="0">(DE-588)4184132-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brézis, H.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Daqian</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PAD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029531500</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 2002 Shanghai gnd-content |
genre_facet | Konferenzschrift 2002 Shanghai |
id | DE-604.BV044124655 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:44:25Z |
institution | BVB |
isbn | 9812562036 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029531500 |
oclc_num | 476063560 |
open_access_boolean | |
physical | vii, 186 p. |
psigel | ZDB-30-PAD |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Higher Education Press |
record_format | marc |
series2 | Series in contemporary applied mathematics |
spelling | "Ginzburg-Landau Vortices" School and Symposium <2002, Fu dan da xue> Verfasser aut Ginzburg-Landau vortices Haïm Brezis, Tatsien Li Beijing, China Higher Education Press c2005 vii, 186 p. txt rdacontent c rdamedia cr rdacarrier Series in contemporary applied mathematics 5 "The "Ginzburg-Landau Vortices" School and Symposium ... was held during November 18-19, 2002 in Fudan University, Shanghai, China"--P. v Includes bibliographical references Mathematik Mathematische Physik Singularities (Mathematics) Mathematical physics Superconductors Mathematics Superfluidity Mathematics Differential equations, Nonlinear Numerical solutions Supraleitung (DE-588)4058651-0 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Suprafluidität (DE-588)4184132-3 gnd rswk-swf Ginzburg-Landau-Gleichung (DE-588)4157356-0 gnd rswk-swf Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 2002 Shanghai gnd-content Ginzburg-Landau-Gleichung (DE-588)4157356-0 s Mathematische Physik (DE-588)4037952-8 s 2\p DE-604 Supraleitung (DE-588)4058651-0 s 3\p DE-604 Nichtlineare Differentialgleichung (DE-588)4205536-2 s 4\p DE-604 Suprafluidität (DE-588)4184132-3 s 5\p DE-604 Brézis, H. Sonstige oth Li, Daqian Sonstige oth 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ginzburg-Landau vortices Mathematik Mathematische Physik Singularities (Mathematics) Mathematical physics Superconductors Mathematics Superfluidity Mathematics Differential equations, Nonlinear Numerical solutions Supraleitung (DE-588)4058651-0 gnd Mathematische Physik (DE-588)4037952-8 gnd Suprafluidität (DE-588)4184132-3 gnd Ginzburg-Landau-Gleichung (DE-588)4157356-0 gnd Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd |
subject_GND | (DE-588)4058651-0 (DE-588)4037952-8 (DE-588)4184132-3 (DE-588)4157356-0 (DE-588)4205536-2 (DE-588)1071861417 |
title | Ginzburg-Landau vortices |
title_auth | Ginzburg-Landau vortices |
title_exact_search | Ginzburg-Landau vortices |
title_full | Ginzburg-Landau vortices Haïm Brezis, Tatsien Li |
title_fullStr | Ginzburg-Landau vortices Haïm Brezis, Tatsien Li |
title_full_unstemmed | Ginzburg-Landau vortices Haïm Brezis, Tatsien Li |
title_short | Ginzburg-Landau vortices |
title_sort | ginzburg landau vortices |
topic | Mathematik Mathematische Physik Singularities (Mathematics) Mathematical physics Superconductors Mathematics Superfluidity Mathematics Differential equations, Nonlinear Numerical solutions Supraleitung (DE-588)4058651-0 gnd Mathematische Physik (DE-588)4037952-8 gnd Suprafluidität (DE-588)4184132-3 gnd Ginzburg-Landau-Gleichung (DE-588)4157356-0 gnd Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd |
topic_facet | Mathematik Mathematische Physik Singularities (Mathematics) Mathematical physics Superconductors Mathematics Superfluidity Mathematics Differential equations, Nonlinear Numerical solutions Supraleitung Suprafluidität Ginzburg-Landau-Gleichung Nichtlineare Differentialgleichung Konferenzschrift 2002 Shanghai |
work_keys_str_mv | AT ginzburglandauvorticesschoolandsymposium2002fudandaxue ginzburglandauvortices AT brezish ginzburglandauvortices AT lidaqian ginzburglandauvortices |