Techniques for Noise Robustness in Automatic Speech Recognition:
Automatic speech recognition (ASR) systems are finding increasing use in everyday life. Many of the commonplace environments where the systems are used are noisy, for example users calling up a voice search system from a busy cafeteria or a street. This can result in degraded speech recordings and a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Somerset
Wiley
2012
|
Ausgabe: | 1st ed |
Schlagworte: | |
Zusammenfassung: | Automatic speech recognition (ASR) systems are finding increasing use in everyday life. Many of the commonplace environments where the systems are used are noisy, for example users calling up a voice search system from a busy cafeteria or a street. This can result in degraded speech recordings and adversely affect the performance of speech recognition systems. As the use of ASR systems increases, knowledge of the state-of-the-art in techniques to deal with such problems becomes critical to system and application engineers and researchers who work with or on ASR technologies. This book presents a comprehensive survey of the state-of-the-art in techniques used to improve the robustness of speech recognition systems to these degrading external influences. Key features: Reviews all the main noise robust ASR approaches, including signal separation, voice activity detection, robust feature extraction, model compensation and adaptation, missing data techniques and recognition of reverberant speech. Acts as a timely exposition of the topic in light of more widespread use in the future of ASR technology in challenging environments. Addresses robustness issues and signal degradation which are both key requirements for practitioners of ASR. Includes contributions from top ASR researchers from leading research units in the field |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (554 pages) |
ISBN: | 9781118392669 9781119970880 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044049843 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 170217s2012 |||| o||u| ||||||eng d | ||
020 | |a 9781118392669 |9 978-1-118-39266-9 | ||
020 | |a 9781119970880 |c Print |9 978-1-119-97088-0 | ||
035 | |a (ZDB-30-PAD)EBC1032417 | ||
035 | |a (ZDB-89-EBL)EBL1032417 | ||
035 | |a (ZDB-38-EBR)ebr10606029 | ||
035 | |a (OCoLC)815390381 | ||
035 | |a (DE-599)BVBBV044049843 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 006.4/54 | |
100 | 1 | |a Virtanen, Tuomas |e Verfasser |4 aut | |
245 | 1 | 0 | |a Techniques for Noise Robustness in Automatic Speech Recognition |
250 | |a 1st ed | ||
264 | 1 | |a Somerset |b Wiley |c 2012 | |
264 | 4 | |c © 2013 | |
300 | |a 1 online resource (554 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | |a Automatic speech recognition (ASR) systems are finding increasing use in everyday life. Many of the commonplace environments where the systems are used are noisy, for example users calling up a voice search system from a busy cafeteria or a street. This can result in degraded speech recordings and adversely affect the performance of speech recognition systems. As the use of ASR systems increases, knowledge of the state-of-the-art in techniques to deal with such problems becomes critical to system and application engineers and researchers who work with or on ASR technologies. This book presents a comprehensive survey of the state-of-the-art in techniques used to improve the robustness of speech recognition systems to these degrading external influences. Key features: Reviews all the main noise robust ASR approaches, including signal separation, voice activity detection, robust feature extraction, model compensation and adaptation, missing data techniques and recognition of reverberant speech. Acts as a timely exposition of the topic in light of more widespread use in the future of ASR technology in challenging environments. Addresses robustness issues and signal degradation which are both key requirements for practitioners of ASR. Includes contributions from top ASR researchers from leading research units in the field | ||
650 | 4 | |a Automatic speech recognition | |
650 | 0 | 7 | |a Automatische Spracherkennung |0 (DE-588)4003961-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Rauschen |0 (DE-588)4048606-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Automatische Spracherkennung |0 (DE-588)4003961-4 |D s |
689 | 0 | 1 | |a Rauschen |0 (DE-588)4048606-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Singh, Rita |e Sonstige |4 oth | |
700 | 1 | |a Raj, Bhiksha |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Virtanen, Tuomas |t Techniques for Noise Robustness in Automatic Speech Recognition |
912 | |a ZDB-30-PAD |a ZDB-38-ESG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029456688 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804177066690609152 |
---|---|
any_adam_object | |
author | Virtanen, Tuomas |
author_facet | Virtanen, Tuomas |
author_role | aut |
author_sort | Virtanen, Tuomas |
author_variant | t v tv |
building | Verbundindex |
bvnumber | BV044049843 |
collection | ZDB-30-PAD ZDB-38-ESG |
ctrlnum | (ZDB-30-PAD)EBC1032417 (ZDB-89-EBL)EBL1032417 (ZDB-38-EBR)ebr10606029 (OCoLC)815390381 (DE-599)BVBBV044049843 |
dewey-full | 006.4/54 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.4/54 |
dewey-search | 006.4/54 |
dewey-sort | 16.4 254 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03065nmm a2200481zc 4500</leader><controlfield tag="001">BV044049843</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170217s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118392669</subfield><subfield code="9">978-1-118-39266-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119970880</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-119-97088-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC1032417</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL1032417</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr10606029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815390381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044049843</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.4/54</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Virtanen, Tuomas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Techniques for Noise Robustness in Automatic Speech Recognition</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Somerset</subfield><subfield code="b">Wiley</subfield><subfield code="c">2012</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (554 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Automatic speech recognition (ASR) systems are finding increasing use in everyday life. Many of the commonplace environments where the systems are used are noisy, for example users calling up a voice search system from a busy cafeteria or a street. This can result in degraded speech recordings and adversely affect the performance of speech recognition systems. As the use of ASR systems increases, knowledge of the state-of-the-art in techniques to deal with such problems becomes critical to system and application engineers and researchers who work with or on ASR technologies. This book presents a comprehensive survey of the state-of-the-art in techniques used to improve the robustness of speech recognition systems to these degrading external influences. Key features: Reviews all the main noise robust ASR approaches, including signal separation, voice activity detection, robust feature extraction, model compensation and adaptation, missing data techniques and recognition of reverberant speech. Acts as a timely exposition of the topic in light of more widespread use in the future of ASR technology in challenging environments. Addresses robustness issues and signal degradation which are both key requirements for practitioners of ASR. Includes contributions from top ASR researchers from leading research units in the field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic speech recognition</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automatische Spracherkennung</subfield><subfield code="0">(DE-588)4003961-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rauschen</subfield><subfield code="0">(DE-588)4048606-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Automatische Spracherkennung</subfield><subfield code="0">(DE-588)4003961-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Rauschen</subfield><subfield code="0">(DE-588)4048606-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Rita</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raj, Bhiksha</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Virtanen, Tuomas</subfield><subfield code="t">Techniques for Noise Robustness in Automatic Speech Recognition</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PAD</subfield><subfield code="a">ZDB-38-ESG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029456688</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV044049843 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:42:10Z |
institution | BVB |
isbn | 9781118392669 9781119970880 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029456688 |
oclc_num | 815390381 |
open_access_boolean | |
physical | 1 online resource (554 pages) |
psigel | ZDB-30-PAD ZDB-38-ESG |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Wiley |
record_format | marc |
spelling | Virtanen, Tuomas Verfasser aut Techniques for Noise Robustness in Automatic Speech Recognition 1st ed Somerset Wiley 2012 © 2013 1 online resource (554 pages) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Automatic speech recognition (ASR) systems are finding increasing use in everyday life. Many of the commonplace environments where the systems are used are noisy, for example users calling up a voice search system from a busy cafeteria or a street. This can result in degraded speech recordings and adversely affect the performance of speech recognition systems. As the use of ASR systems increases, knowledge of the state-of-the-art in techniques to deal with such problems becomes critical to system and application engineers and researchers who work with or on ASR technologies. This book presents a comprehensive survey of the state-of-the-art in techniques used to improve the robustness of speech recognition systems to these degrading external influences. Key features: Reviews all the main noise robust ASR approaches, including signal separation, voice activity detection, robust feature extraction, model compensation and adaptation, missing data techniques and recognition of reverberant speech. Acts as a timely exposition of the topic in light of more widespread use in the future of ASR technology in challenging environments. Addresses robustness issues and signal degradation which are both key requirements for practitioners of ASR. Includes contributions from top ASR researchers from leading research units in the field Automatic speech recognition Automatische Spracherkennung (DE-588)4003961-4 gnd rswk-swf Rauschen (DE-588)4048606-0 gnd rswk-swf Automatische Spracherkennung (DE-588)4003961-4 s Rauschen (DE-588)4048606-0 s 1\p DE-604 Singh, Rita Sonstige oth Raj, Bhiksha Sonstige oth Erscheint auch als Druck-Ausgabe Virtanen, Tuomas Techniques for Noise Robustness in Automatic Speech Recognition 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Virtanen, Tuomas Techniques for Noise Robustness in Automatic Speech Recognition Automatic speech recognition Automatische Spracherkennung (DE-588)4003961-4 gnd Rauschen (DE-588)4048606-0 gnd |
subject_GND | (DE-588)4003961-4 (DE-588)4048606-0 |
title | Techniques for Noise Robustness in Automatic Speech Recognition |
title_auth | Techniques for Noise Robustness in Automatic Speech Recognition |
title_exact_search | Techniques for Noise Robustness in Automatic Speech Recognition |
title_full | Techniques for Noise Robustness in Automatic Speech Recognition |
title_fullStr | Techniques for Noise Robustness in Automatic Speech Recognition |
title_full_unstemmed | Techniques for Noise Robustness in Automatic Speech Recognition |
title_short | Techniques for Noise Robustness in Automatic Speech Recognition |
title_sort | techniques for noise robustness in automatic speech recognition |
topic | Automatic speech recognition Automatische Spracherkennung (DE-588)4003961-4 gnd Rauschen (DE-588)4048606-0 gnd |
topic_facet | Automatic speech recognition Automatische Spracherkennung Rauschen |
work_keys_str_mv | AT virtanentuomas techniquesfornoiserobustnessinautomaticspeechrecognition AT singhrita techniquesfornoiserobustnessinautomaticspeechrecognition AT rajbhiksha techniquesfornoiserobustnessinautomaticspeechrecognition |