Geometric Measure Theory: A Beginner's Guide
Geometric measure theory has become increasingly essential to geometry as well as numerous and varied physical applications. The third edition of this leading text/reference introduces the theory, the framework for the study of crystal growth, clusters of soap bubbles, and similar structures involvi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Burlington
Elsevier Science
2000
|
Ausgabe: | 3rd ed |
Schlagworte: | |
Zusammenfassung: | Geometric measure theory has become increasingly essential to geometry as well as numerous and varied physical applications. The third edition of this leading text/reference introduces the theory, the framework for the study of crystal growth, clusters of soap bubbles, and similar structures involving minimization of energy. Over the past thirty years, this theory has contributed to major advances in geometry and analysis including, for example, the original proof of the positive mass conjecture in cosmology. This third edition of Geometric Measure Theory: A Beginner's Guide presents, for the first time in print, the proofs of the double bubble and the hexagonal honeycomb conjectures. Four new chapters lead the reader through treatments of the Weaire-Phelan counterexample of Kelvin's conjecture, Almgren's optimal isoperimetric inequality, and immiscible fluids and crystals. The abundant illustrations, examples, exercises, and solutions in this book will enhance its reputation as the most accessible introduction to the subject |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (239 pages) |
ISBN: | 9780080525600 9780125068512 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044049401 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 170217s2000 |||| o||u| ||||||eng d | ||
020 | |a 9780080525600 |9 978-0-08-052560-0 | ||
020 | |a 9780125068512 |c Print |9 978-0-12-506851-2 | ||
035 | |a (ZDB-30-PAD)EBC296626 | ||
035 | |a (ZDB-89-EBL)EBL296626 | ||
035 | |a (ZDB-38-EBR)ebr10178519 | ||
035 | |a (OCoLC)476066313 | ||
035 | |a (DE-599)BVBBV044049401 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 515.42 | |
100 | 1 | |a Morgan, Frank |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometric Measure Theory |b A Beginner's Guide |
250 | |a 3rd ed | ||
264 | 1 | |a Burlington |b Elsevier Science |c 2000 | |
264 | 4 | |c © 2000 | |
300 | |a 1 online resource (239 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | |a Geometric measure theory has become increasingly essential to geometry as well as numerous and varied physical applications. The third edition of this leading text/reference introduces the theory, the framework for the study of crystal growth, clusters of soap bubbles, and similar structures involving minimization of energy. Over the past thirty years, this theory has contributed to major advances in geometry and analysis including, for example, the original proof of the positive mass conjecture in cosmology. This third edition of Geometric Measure Theory: A Beginner's Guide presents, for the first time in print, the proofs of the double bubble and the hexagonal honeycomb conjectures. Four new chapters lead the reader through treatments of the Weaire-Phelan counterexample of Kelvin's conjecture, Almgren's optimal isoperimetric inequality, and immiscible fluids and crystals. The abundant illustrations, examples, exercises, and solutions in this book will enhance its reputation as the most accessible introduction to the subject | ||
650 | 4 | |a Geometric measure theory | |
650 | 0 | 7 | |a Geometrische Maßtheorie |0 (DE-588)4125258-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geometrische Maßtheorie |0 (DE-588)4125258-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Morgan, Frank |t Geometric Measure Theory : A Beginner's Guide |
912 | |a ZDB-30-PAD |a ZDB-38-ESG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029456246 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804177065826582528 |
---|---|
any_adam_object | |
author | Morgan, Frank |
author_facet | Morgan, Frank |
author_role | aut |
author_sort | Morgan, Frank |
author_variant | f m fm |
building | Verbundindex |
bvnumber | BV044049401 |
collection | ZDB-30-PAD ZDB-38-ESG |
ctrlnum | (ZDB-30-PAD)EBC296626 (ZDB-89-EBL)EBL296626 (ZDB-38-EBR)ebr10178519 (OCoLC)476066313 (DE-599)BVBBV044049401 |
dewey-full | 515.42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.42 |
dewey-search | 515.42 |
dewey-sort | 3515.42 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 3rd ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02527nmm a2200433zc 4500</leader><controlfield tag="001">BV044049401</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170217s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080525600</subfield><subfield code="9">978-0-08-052560-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780125068512</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-12-506851-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC296626</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL296626</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr10178519</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)476066313</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044049401</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.42</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Morgan, Frank</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric Measure Theory</subfield><subfield code="b">A Beginner's Guide</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3rd ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Burlington</subfield><subfield code="b">Elsevier Science</subfield><subfield code="c">2000</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (239 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Geometric measure theory has become increasingly essential to geometry as well as numerous and varied physical applications. The third edition of this leading text/reference introduces the theory, the framework for the study of crystal growth, clusters of soap bubbles, and similar structures involving minimization of energy. Over the past thirty years, this theory has contributed to major advances in geometry and analysis including, for example, the original proof of the positive mass conjecture in cosmology. This third edition of Geometric Measure Theory: A Beginner's Guide presents, for the first time in print, the proofs of the double bubble and the hexagonal honeycomb conjectures. Four new chapters lead the reader through treatments of the Weaire-Phelan counterexample of Kelvin's conjecture, Almgren's optimal isoperimetric inequality, and immiscible fluids and crystals. The abundant illustrations, examples, exercises, and solutions in this book will enhance its reputation as the most accessible introduction to the subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric measure theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Maßtheorie</subfield><subfield code="0">(DE-588)4125258-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrische Maßtheorie</subfield><subfield code="0">(DE-588)4125258-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Morgan, Frank</subfield><subfield code="t">Geometric Measure Theory : A Beginner's Guide</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PAD</subfield><subfield code="a">ZDB-38-ESG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029456246</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV044049401 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:42:09Z |
institution | BVB |
isbn | 9780080525600 9780125068512 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029456246 |
oclc_num | 476066313 |
open_access_boolean | |
physical | 1 online resource (239 pages) |
psigel | ZDB-30-PAD ZDB-38-ESG |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Elsevier Science |
record_format | marc |
spelling | Morgan, Frank Verfasser aut Geometric Measure Theory A Beginner's Guide 3rd ed Burlington Elsevier Science 2000 © 2000 1 online resource (239 pages) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Geometric measure theory has become increasingly essential to geometry as well as numerous and varied physical applications. The third edition of this leading text/reference introduces the theory, the framework for the study of crystal growth, clusters of soap bubbles, and similar structures involving minimization of energy. Over the past thirty years, this theory has contributed to major advances in geometry and analysis including, for example, the original proof of the positive mass conjecture in cosmology. This third edition of Geometric Measure Theory: A Beginner's Guide presents, for the first time in print, the proofs of the double bubble and the hexagonal honeycomb conjectures. Four new chapters lead the reader through treatments of the Weaire-Phelan counterexample of Kelvin's conjecture, Almgren's optimal isoperimetric inequality, and immiscible fluids and crystals. The abundant illustrations, examples, exercises, and solutions in this book will enhance its reputation as the most accessible introduction to the subject Geometric measure theory Geometrische Maßtheorie (DE-588)4125258-5 gnd rswk-swf Geometrische Maßtheorie (DE-588)4125258-5 s 1\p DE-604 Erscheint auch als Druck-Ausgabe Morgan, Frank Geometric Measure Theory : A Beginner's Guide 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Morgan, Frank Geometric Measure Theory A Beginner's Guide Geometric measure theory Geometrische Maßtheorie (DE-588)4125258-5 gnd |
subject_GND | (DE-588)4125258-5 |
title | Geometric Measure Theory A Beginner's Guide |
title_auth | Geometric Measure Theory A Beginner's Guide |
title_exact_search | Geometric Measure Theory A Beginner's Guide |
title_full | Geometric Measure Theory A Beginner's Guide |
title_fullStr | Geometric Measure Theory A Beginner's Guide |
title_full_unstemmed | Geometric Measure Theory A Beginner's Guide |
title_short | Geometric Measure Theory |
title_sort | geometric measure theory a beginner s guide |
title_sub | A Beginner's Guide |
topic | Geometric measure theory Geometrische Maßtheorie (DE-588)4125258-5 gnd |
topic_facet | Geometric measure theory Geometrische Maßtheorie |
work_keys_str_mv | AT morganfrank geometricmeasuretheoryabeginnersguide |