Equivariant ordinary homology and cohomology:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
[Cham]
Springer
[2016]
|
Schriftenreihe: | Lecture Notes in Mathematics
2178 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xiv, 294 Seiten |
ISBN: | 9783319504476 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV044032191 | ||
003 | DE-604 | ||
005 | 20170224 | ||
007 | t | ||
008 | 170207s2016 |||| 00||| eng d | ||
020 | |a 9783319504476 |c Print |9 978-3-319-50447-6 | ||
035 | |a (OCoLC)973044801 | ||
035 | |a (DE-599)BVBBV044032191 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-188 |a DE-824 |a DE-355 | ||
082 | 0 | |a 514.2 |2 23 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a 55N91 |2 msc | ||
100 | 1 | |a Costenoble, Steven R. |d 1961- |0 (DE-588)1014760356 |4 aut | |
245 | 1 | 0 | |a Equivariant ordinary homology and cohomology |c Steven R. Costenoble, Stefan Waner |
264 | 1 | |a [Cham] |b Springer |c [2016] | |
264 | 4 | |c © 2016 | |
300 | |a xiv, 294 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture Notes in Mathematics |v 2178 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Category theory (Mathematics) | |
650 | 4 | |a Homological algebra | |
650 | 4 | |a Topological groups | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Complex manifolds | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Category Theory, Homological Algebra | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Waner, Stefan |d 1949- |0 (DE-588)1014760100 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-319-50448-3 |
830 | 0 | |a Lecture Notes in Mathematics |v 2178 |w (DE-604)BV000676446 |9 2178 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029439435&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029439435 |
Datensatz im Suchindex
_version_ | 1804177036198019072 |
---|---|
adam_text | Contents
1 RO (G)-Graded Ordinary Homology and Cohomology.................. 1
1.1 Examples of Equivariant Cell Complexes...................... 3
1.1.1 G-CW Complexes....................................... 3
1.1.2 G-CW(F) Complexes.................................. 6
■1.1.3 Dual G-CW(V) Complexes............................. 8
1.2 Dimension Functions ....................................... 10
1.3 Virtual Representations.................................... 14
1.4 Cell Complexes............. —........................... 15
1.5 A Brief Introduction to Equivariant Stable Homotopy........ 29
1.6 The Algebra of Mackey Functors........................... 32
1.7 Homology and Cohomology of Cell Complexes................. 40
1.8 Ordinary and Dual Homology and Cohomology................ 47
1.9 Stable G~CW Approximation of Spaces........................ 48
1.10 Homology and Cohomology of Spaces.......................... 53
1.10.1 Cellular Chains of G-Spaces......................... 53
1.10.2 Definition and Properties of Homology
and Cohomology.................................... 54
1.10.3 Independence of Choices........................... 64
1.11 Atiyah-Hirzebruch Spectral Sequences and Uniqueness..... 69
1.12 The Representing Spectra................................. 72
1.13 Change of Groups........................................... 77
1.13.1 Subgroups........................................... 77
1.13.2 Quotient Groups................................... 85
1.13.3 Subgroups of Quotient Groups....................... 105
1.14 Products.................................................. 112
1.14.1 Product Complexes.................................. 112
1.14.2 Cup Products....................................... 115
1.14.3 Slant Products, Evaluations, and Cap Products...... 129
1.15 The Thom Isomorphism and Poincaré Duality................. 136
1.15.1 The Thom Isomorphism............................... 136
1.15.2 Poincaré Duality................................... 139
xiii
xiv Contents
1.16 An Example: The Rotating Sphere ........................... 143
1.17 A Survey of Calculations................................... 146
1.18 Relationship to B orel Homology ............................ 150
1.19 Miscellaneous Remarks...................................... 152
1.19.1 Ordinary Homology of G-Spectra...................... 152
1.19.2 Model Categories........................... —*...... 153
2 Parametrized Homotopy Theory and Fundamental Groupoids............. 155
2.1 The Fundamental Groupoid................................... 156
2.2 Parametrized Spaces and Lax Maps........................... 159
2.3 Lax Maps and Model Categories .............................. 164
2.4 Parametrized Spectra........................................ 166
2.5 Lax Maps of Spectra......................................... 169
2.6 The Stable Fundamental Groupoid............................. 178
2.7 Parametrized Homology and Cohomology Theories.............. 187
2.8 Representing Parametrized Homology
and Cohomology Theories..................................... 190
2.9 Duality.................................................... 194
3 RO(IH?)-Graded Ordinary Homology and Cohomology................... 203
3.1 Examples of Parametrized Cell Complexes..................... 204
3.1.1 G-CW(y) Complexes.................................. 204
3.1.2 Dual G-CW(y) Complexes ............................ 206
3.2 S-G-CW(y) Complexes........................................ 207
3.3 Homology and Cohomology of Parametrized Cell Complexes..... 215
3.4 Stable G-CW Approximation of Parametrized Spaces .......... 219
3.5 Homology and Cohomology of Parametrized Spaces ............. 222
3.6 Atiyah-Hirzebruch Spectral Sequences and Uniqueness......... 229
3.7 The Representing Spectra.................................... 230
3.8 Change of Base Space........................................ 233
3.9 Change of Groups.........................................— 241
3.9.1 Subgroups........................................... 241
3.9.2 Quotient Groups.................................... 247
3.9.3 Subgroups of Quotient Groups........................ 256
3.10 Products................................................... 260
3.10.1 Cup Products........................................ 260
3.10.2 Slant Products, Evaluations, and Cap Products....... 269
3.11 The Thom Isomorphism and Poincare Duality................... 276
3.11.1 The Thom Isomorphism............................ 276
3.11.2 Poincare Duality.................................. 277
3.12 A Calculation............................................. 279
Bibliography....................................................... 283
Index of Notations.................................................. 287
Index
291
|
any_adam_object | 1 |
author | Costenoble, Steven R. 1961- Waner, Stefan 1949- |
author_GND | (DE-588)1014760356 (DE-588)1014760100 |
author_facet | Costenoble, Steven R. 1961- Waner, Stefan 1949- |
author_role | aut aut |
author_sort | Costenoble, Steven R. 1961- |
author_variant | s r c sr src s w sw |
building | Verbundindex |
bvnumber | BV044032191 |
classification_rvk | SI 850 |
ctrlnum | (OCoLC)973044801 (DE-599)BVBBV044032191 |
dewey-full | 514.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.2 |
dewey-search | 514.2 |
dewey-sort | 3514.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01954nam a2200517 cb4500</leader><controlfield tag="001">BV044032191</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170224 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170207s2016 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319504476</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-319-50447-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)973044801</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044032191</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55N91</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Costenoble, Steven R.</subfield><subfield code="d">1961-</subfield><subfield code="0">(DE-588)1014760356</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Equivariant ordinary homology and cohomology</subfield><subfield code="c">Steven R. Costenoble, Stefan Waner</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Cham]</subfield><subfield code="b">Springer</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 294 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture Notes in Mathematics</subfield><subfield code="v">2178</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Category theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homological algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Category Theory, Homological Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Waner, Stefan</subfield><subfield code="d">1949-</subfield><subfield code="0">(DE-588)1014760100</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-319-50448-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture Notes in Mathematics</subfield><subfield code="v">2178</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">2178</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029439435&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029439435</subfield></datafield></record></collection> |
id | DE-604.BV044032191 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:41:41Z |
institution | BVB |
isbn | 9783319504476 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029439435 |
oclc_num | 973044801 |
open_access_boolean | |
owner | DE-83 DE-188 DE-824 DE-355 DE-BY-UBR |
owner_facet | DE-83 DE-188 DE-824 DE-355 DE-BY-UBR |
physical | xiv, 294 Seiten |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Springer |
record_format | marc |
series | Lecture Notes in Mathematics |
series2 | Lecture Notes in Mathematics |
spelling | Costenoble, Steven R. 1961- (DE-588)1014760356 aut Equivariant ordinary homology and cohomology Steven R. Costenoble, Stefan Waner [Cham] Springer [2016] © 2016 xiv, 294 Seiten txt rdacontent n rdamedia nc rdacarrier Lecture Notes in Mathematics 2178 Mathematics Category theory (Mathematics) Homological algebra Topological groups Lie groups Algebraic topology Manifolds (Mathematics) Complex manifolds Algebraic Topology Manifolds and Cell Complexes (incl. Diff.Topology) Category Theory, Homological Algebra Topological Groups, Lie Groups Mathematik Waner, Stefan 1949- (DE-588)1014760100 aut Erscheint auch als Online-Ausgabe 978-3-319-50448-3 Lecture Notes in Mathematics 2178 (DE-604)BV000676446 2178 Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029439435&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Costenoble, Steven R. 1961- Waner, Stefan 1949- Equivariant ordinary homology and cohomology Lecture Notes in Mathematics Mathematics Category theory (Mathematics) Homological algebra Topological groups Lie groups Algebraic topology Manifolds (Mathematics) Complex manifolds Algebraic Topology Manifolds and Cell Complexes (incl. Diff.Topology) Category Theory, Homological Algebra Topological Groups, Lie Groups Mathematik |
title | Equivariant ordinary homology and cohomology |
title_auth | Equivariant ordinary homology and cohomology |
title_exact_search | Equivariant ordinary homology and cohomology |
title_full | Equivariant ordinary homology and cohomology Steven R. Costenoble, Stefan Waner |
title_fullStr | Equivariant ordinary homology and cohomology Steven R. Costenoble, Stefan Waner |
title_full_unstemmed | Equivariant ordinary homology and cohomology Steven R. Costenoble, Stefan Waner |
title_short | Equivariant ordinary homology and cohomology |
title_sort | equivariant ordinary homology and cohomology |
topic | Mathematics Category theory (Mathematics) Homological algebra Topological groups Lie groups Algebraic topology Manifolds (Mathematics) Complex manifolds Algebraic Topology Manifolds and Cell Complexes (incl. Diff.Topology) Category Theory, Homological Algebra Topological Groups, Lie Groups Mathematik |
topic_facet | Mathematics Category theory (Mathematics) Homological algebra Topological groups Lie groups Algebraic topology Manifolds (Mathematics) Complex manifolds Algebraic Topology Manifolds and Cell Complexes (incl. Diff.Topology) Category Theory, Homological Algebra Topological Groups, Lie Groups Mathematik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029439435&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT costenoblestevenr equivariantordinaryhomologyandcohomology AT wanerstefan equivariantordinaryhomologyandcohomology |