Emerging topics on differential geometry and graph theory:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
New York
Nova Science Publishers
©2010
|
Schriftenreihe: | Mathematics research developments series
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 |
Beschreibung: | Includes bibliographical references and index ""EMERGING TOPICS ON DIFFERENTIALGEOMETRY AND GRAPH THEORY""; ""CONTENTS""; ""PREFACE""; ""APPLICATIONS OF GRAPH THEORY IN MECHANISMANALYSIS""; ""Abstract""; ""1. Introduction""; ""2 Graph Representation of Mechanisms""; ""2.1. Topological Graph Representation of Kcs with Simple Joints""; ""2.2. Bicolored Graph Representation of Kcs with Multiple Joints""; ""2.3. Tricolored Graph Representation of Glms""; ""2.4. Combinatorial Graph Representation of Glkcs""; ""3. Detection of Isomorphism Among Kcs and Glkcs""; ""3.1. Detection of Isomorphism Among Kcs"" ""(1) Theory to Detect Isomorphism among Kcs""""(2) Method to Detect Isomorphism among Kcs""; ""(3) Illustrations""; ""Example 1. Determination of Isomorphism of Kcs.""; ""Example 2: Determination of Isomorphism of Graphs""; ""3.2. Detection of Isomorphism among Glkcs""; ""(1) Theory to Detect Isomorphism Among Glkcs""; ""(2) Method to Detect Isomorphism Among Kcs""; ""(3) Illustrations""; ""Example 1: Determination of Isomorphism of the Glkcs, as Shown in Fig. 10(A) and (B)""; ""Example 2: Determination of isomorphism of the GLKCs, as shown in Fig. 11(a) and (b)."" ""4. Topology-Loop Characteristics of Kcs""""4.1. The Number of Topological Loops of Bicolored Graph""; ""4.2. The Number of Topological Loops of Tricolored Graph""; ""5. Structural Decomposition of Mechanisms""; ""5.1. Principle of Structural Decomposition""; ""5.2. Calculation of Transformation Number""; ""5.3. Types of Kinematic Units""; ""5.4. Criteria of Choosing the Sequential Circuits""; ""5.5. Examples of Structural Decomposition""; ""Example 1: Fig. 15(A) Shows A PLM with one DOF, and Fig. 15(B) the Weighted Graphand Fig. 15(C) the Decomposing Procedure."" ""Example 2: Fig. 16(A) Shows a Hydraulic Mechanism with one DOF, and Fig. 16(B) theWeighted Bicolored Graph and Fig. 16(C) the Decomposing Procedure.""""Example 3: Fig. 17(A) Shows a GLM with one DOF, and Fig. 17(B) the WeightedTricolored Graph and Fig. 17(C) the Decomposing Procedure.""; ""Example 4: Fig. 18 Shows a Complex GLM, its Tricolored Graph, and the DecomposingProcedure.""; ""6. Conclusion""; ""References""; ""A CATEGORICAL PERSPECTIVE ON CONNECTIONSWITH APPLICATION IN THE FORMULATION OFFUNCTORIAL PHYSICAL DYNAMICS""; ""Abstract""; ""1. Introduction"" ""2. The Extension/Restriction of Scalars Categorical Adjunction""""2.1. The Adjoint Pair of Extension/Restriction Functors""; ""2.2. The Universal Object of Differential 1-Forms""; ""2.3. The Notion of Connection""; ""2.4. The Algebraic De Rham Complex and the Notion of Curvature""; ""3. The Abstract Equivalent Monadic Notion of Connection""; ""3.1. The Extension/Restriction of Scalars Monad-Comonad Pair""; ""3.2. Categorical Monadic Reformulation of Connections""; ""4. General Theory of Relativity from the ClassicalExtension/Restriction Monad-Comonad Pair"" |
Beschreibung: | x, 417 pages |
ISBN: | 1611220696 9781611220698 9781607410119 1607410117 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043961359 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161213s2010 |||| o||u| ||||||eng d | ||
020 | |a 1611220696 |9 1-61122-069-6 | ||
020 | |a 9781611220698 |9 978-1-61122-069-8 | ||
020 | |a 9781607410119 |9 978-1-60741-011-9 | ||
020 | |a 1607410117 |9 1-60741-011-7 | ||
035 | |a (ZDB-4-EBA)ocn830627948 | ||
035 | |a (OCoLC)830627948 | ||
035 | |a (DE-599)BVBBV043961359 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1047 |a DE-1046 | ||
082 | 0 | |a 516.3/6 |2 22 | |
245 | 1 | 0 | |a Emerging topics on differential geometry and graph theory |c Lucas Bernard and François Roux, editors |
264 | 1 | |a New York |b Nova Science Publishers |c ©2010 | |
300 | |a x, 417 pages | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics research developments series | |
500 | |a Includes bibliographical references and index | ||
500 | |a ""EMERGING TOPICS ON DIFFERENTIALGEOMETRY AND GRAPH THEORY""; ""CONTENTS""; ""PREFACE""; ""APPLICATIONS OF GRAPH THEORY IN MECHANISMANALYSIS""; ""Abstract""; ""1. Introduction""; ""2 Graph Representation of Mechanisms""; ""2.1. Topological Graph Representation of Kcs with Simple Joints""; ""2.2. Bicolored Graph Representation of Kcs with Multiple Joints""; ""2.3. Tricolored Graph Representation of Glms""; ""2.4. Combinatorial Graph Representation of Glkcs""; ""3. Detection of Isomorphism Among Kcs and Glkcs""; ""3.1. Detection of Isomorphism Among Kcs"" | ||
500 | |a ""(1) Theory to Detect Isomorphism among Kcs""""(2) Method to Detect Isomorphism among Kcs""; ""(3) Illustrations""; ""Example 1. Determination of Isomorphism of Kcs.""; ""Example 2: Determination of Isomorphism of Graphs""; ""3.2. Detection of Isomorphism among Glkcs""; ""(1) Theory to Detect Isomorphism Among Glkcs""; ""(2) Method to Detect Isomorphism Among Kcs""; ""(3) Illustrations""; ""Example 1: Determination of Isomorphism of the Glkcs, as Shown in Fig. 10(A) and (B)""; ""Example 2: Determination of isomorphism of the GLKCs, as shown in Fig. 11(a) and (b)."" | ||
500 | |a ""4. Topology-Loop Characteristics of Kcs""""4.1. The Number of Topological Loops of Bicolored Graph""; ""4.2. The Number of Topological Loops of Tricolored Graph""; ""5. Structural Decomposition of Mechanisms""; ""5.1. Principle of Structural Decomposition""; ""5.2. Calculation of Transformation Number""; ""5.3. Types of Kinematic Units""; ""5.4. Criteria of Choosing the Sequential Circuits""; ""5.5. Examples of Structural Decomposition""; ""Example 1: Fig. 15(A) Shows A PLM with one DOF, and Fig. 15(B) the Weighted Graphand Fig. 15(C) the Decomposing Procedure."" | ||
500 | |a ""Example 2: Fig. 16(A) Shows a Hydraulic Mechanism with one DOF, and Fig. 16(B) theWeighted Bicolored Graph and Fig. 16(C) the Decomposing Procedure.""""Example 3: Fig. 17(A) Shows a GLM with one DOF, and Fig. 17(B) the WeightedTricolored Graph and Fig. 17(C) the Decomposing Procedure.""; ""Example 4: Fig. 18 Shows a Complex GLM, its Tricolored Graph, and the DecomposingProcedure.""; ""6. Conclusion""; ""References""; ""A CATEGORICAL PERSPECTIVE ON CONNECTIONSWITH APPLICATION IN THE FORMULATION OFFUNCTORIAL PHYSICAL DYNAMICS""; ""Abstract""; ""1. Introduction"" | ||
500 | |a ""2. The Extension/Restriction of Scalars Categorical Adjunction""""2.1. The Adjoint Pair of Extension/Restriction Functors""; ""2.2. The Universal Object of Differential 1-Forms""; ""2.3. The Notion of Connection""; ""2.4. The Algebraic De Rham Complex and the Notion of Curvature""; ""3. The Abstract Equivalent Monadic Notion of Connection""; ""3.1. The Extension/Restriction of Scalars Monad-Comonad Pair""; ""3.2. Categorical Monadic Reformulation of Connections""; ""4. General Theory of Relativity from the ClassicalExtension/Restriction Monad-Comonad Pair"" | ||
650 | 4 | |a Geometry, Differential | |
650 | 4 | |a Graph theory | |
650 | 7 | |a MATHEMATICS / Geometry / Differential |2 bisacsh | |
650 | 7 | |a Geometry, Differential |2 fast | |
650 | 7 | |a Graph theory |2 fast | |
650 | 4 | |a Geometry, Differential | |
650 | 4 | |a Graph theory | |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
700 | 1 | |a Bernard, Lucas |d 1962- |e Sonstige |4 oth | |
700 | 1 | |a Roux, François |d 1960- |e Sonstige |4 oth | |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029370064 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=539223 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=539223 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176919018602496 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV043961359 |
collection | ZDB-4-EBA |
ctrlnum | (ZDB-4-EBA)ocn830627948 (OCoLC)830627948 (DE-599)BVBBV043961359 |
dewey-full | 516.3/6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/6 |
dewey-search | 516.3/6 |
dewey-sort | 3516.3 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05319nmm a2200649zc 4500</leader><controlfield tag="001">BV043961359</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161213s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1611220696</subfield><subfield code="9">1-61122-069-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781611220698</subfield><subfield code="9">978-1-61122-069-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781607410119</subfield><subfield code="9">978-1-60741-011-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1607410117</subfield><subfield code="9">1-60741-011-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn830627948</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)830627948</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043961359</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1047</subfield><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/6</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Emerging topics on differential geometry and graph theory</subfield><subfield code="c">Lucas Bernard and François Roux, editors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Nova Science Publishers</subfield><subfield code="c">©2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 417 pages</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics research developments series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">""EMERGING TOPICS ON DIFFERENTIALGEOMETRY AND GRAPH THEORY""; ""CONTENTS""; ""PREFACE""; ""APPLICATIONS OF GRAPH THEORY IN MECHANISMANALYSIS""; ""Abstract""; ""1. Introduction""; ""2 Graph Representation of Mechanisms""; ""2.1. Topological Graph Representation of Kcs with Simple Joints""; ""2.2. Bicolored Graph Representation of Kcs with Multiple Joints""; ""2.3. Tricolored Graph Representation of Glms""; ""2.4. Combinatorial Graph Representation of Glkcs""; ""3. Detection of Isomorphism Among Kcs and Glkcs""; ""3.1. Detection of Isomorphism Among Kcs""</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">""(1) Theory to Detect Isomorphism among Kcs""""(2) Method to Detect Isomorphism among Kcs""; ""(3) Illustrations""; ""Example 1. Determination of Isomorphism of Kcs.""; ""Example 2: Determination of Isomorphism of Graphs""; ""3.2. Detection of Isomorphism among Glkcs""; ""(1) Theory to Detect Isomorphism Among Glkcs""; ""(2) Method to Detect Isomorphism Among Kcs""; ""(3) Illustrations""; ""Example 1: Determination of Isomorphism of the Glkcs, as Shown in Fig. 10(A) and (B)""; ""Example 2: Determination of isomorphism of the GLKCs, as shown in Fig. 11(a) and (b).""</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">""4. Topology-Loop Characteristics of Kcs""""4.1. The Number of Topological Loops of Bicolored Graph""; ""4.2. The Number of Topological Loops of Tricolored Graph""; ""5. Structural Decomposition of Mechanisms""; ""5.1. Principle of Structural Decomposition""; ""5.2. Calculation of Transformation Number""; ""5.3. Types of Kinematic Units""; ""5.4. Criteria of Choosing the Sequential Circuits""; ""5.5. Examples of Structural Decomposition""; ""Example 1: Fig. 15(A) Shows A PLM with one DOF, and Fig. 15(B) the Weighted Graphand Fig. 15(C) the Decomposing Procedure.""</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">""Example 2: Fig. 16(A) Shows a Hydraulic Mechanism with one DOF, and Fig. 16(B) theWeighted Bicolored Graph and Fig. 16(C) the Decomposing Procedure.""""Example 3: Fig. 17(A) Shows a GLM with one DOF, and Fig. 17(B) the WeightedTricolored Graph and Fig. 17(C) the Decomposing Procedure.""; ""Example 4: Fig. 18 Shows a Complex GLM, its Tricolored Graph, and the DecomposingProcedure.""; ""6. Conclusion""; ""References""; ""A CATEGORICAL PERSPECTIVE ON CONNECTIONSWITH APPLICATION IN THE FORMULATION OFFUNCTORIAL PHYSICAL DYNAMICS""; ""Abstract""; ""1. Introduction""</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">""2. The Extension/Restriction of Scalars Categorical Adjunction""""2.1. The Adjoint Pair of Extension/Restriction Functors""; ""2.2. The Universal Object of Differential 1-Forms""; ""2.3. The Notion of Connection""; ""2.4. The Algebraic De Rham Complex and the Notion of Curvature""; ""3. The Abstract Equivalent Monadic Notion of Connection""; ""3.1. The Extension/Restriction of Scalars Monad-Comonad Pair""; ""3.2. Categorical Monadic Reformulation of Connections""; ""4. General Theory of Relativity from the ClassicalExtension/Restriction Monad-Comonad Pair""</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Differential</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Differential</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graph theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bernard, Lucas</subfield><subfield code="d">1962-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roux, François</subfield><subfield code="d">1960-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029370064</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=539223</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=539223</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV043961359 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:49Z |
institution | BVB |
isbn | 1611220696 9781611220698 9781607410119 1607410117 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029370064 |
oclc_num | 830627948 |
open_access_boolean | |
owner | DE-1047 DE-1046 |
owner_facet | DE-1047 DE-1046 |
physical | x, 417 pages |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Nova Science Publishers |
record_format | marc |
series2 | Mathematics research developments series |
spelling | Emerging topics on differential geometry and graph theory Lucas Bernard and François Roux, editors New York Nova Science Publishers ©2010 x, 417 pages txt rdacontent c rdamedia cr rdacarrier Mathematics research developments series Includes bibliographical references and index ""EMERGING TOPICS ON DIFFERENTIALGEOMETRY AND GRAPH THEORY""; ""CONTENTS""; ""PREFACE""; ""APPLICATIONS OF GRAPH THEORY IN MECHANISMANALYSIS""; ""Abstract""; ""1. Introduction""; ""2 Graph Representation of Mechanisms""; ""2.1. Topological Graph Representation of Kcs with Simple Joints""; ""2.2. Bicolored Graph Representation of Kcs with Multiple Joints""; ""2.3. Tricolored Graph Representation of Glms""; ""2.4. Combinatorial Graph Representation of Glkcs""; ""3. Detection of Isomorphism Among Kcs and Glkcs""; ""3.1. Detection of Isomorphism Among Kcs"" ""(1) Theory to Detect Isomorphism among Kcs""""(2) Method to Detect Isomorphism among Kcs""; ""(3) Illustrations""; ""Example 1. Determination of Isomorphism of Kcs.""; ""Example 2: Determination of Isomorphism of Graphs""; ""3.2. Detection of Isomorphism among Glkcs""; ""(1) Theory to Detect Isomorphism Among Glkcs""; ""(2) Method to Detect Isomorphism Among Kcs""; ""(3) Illustrations""; ""Example 1: Determination of Isomorphism of the Glkcs, as Shown in Fig. 10(A) and (B)""; ""Example 2: Determination of isomorphism of the GLKCs, as shown in Fig. 11(a) and (b)."" ""4. Topology-Loop Characteristics of Kcs""""4.1. The Number of Topological Loops of Bicolored Graph""; ""4.2. The Number of Topological Loops of Tricolored Graph""; ""5. Structural Decomposition of Mechanisms""; ""5.1. Principle of Structural Decomposition""; ""5.2. Calculation of Transformation Number""; ""5.3. Types of Kinematic Units""; ""5.4. Criteria of Choosing the Sequential Circuits""; ""5.5. Examples of Structural Decomposition""; ""Example 1: Fig. 15(A) Shows A PLM with one DOF, and Fig. 15(B) the Weighted Graphand Fig. 15(C) the Decomposing Procedure."" ""Example 2: Fig. 16(A) Shows a Hydraulic Mechanism with one DOF, and Fig. 16(B) theWeighted Bicolored Graph and Fig. 16(C) the Decomposing Procedure.""""Example 3: Fig. 17(A) Shows a GLM with one DOF, and Fig. 17(B) the WeightedTricolored Graph and Fig. 17(C) the Decomposing Procedure.""; ""Example 4: Fig. 18 Shows a Complex GLM, its Tricolored Graph, and the DecomposingProcedure.""; ""6. Conclusion""; ""References""; ""A CATEGORICAL PERSPECTIVE ON CONNECTIONSWITH APPLICATION IN THE FORMULATION OFFUNCTORIAL PHYSICAL DYNAMICS""; ""Abstract""; ""1. Introduction"" ""2. The Extension/Restriction of Scalars Categorical Adjunction""""2.1. The Adjoint Pair of Extension/Restriction Functors""; ""2.2. The Universal Object of Differential 1-Forms""; ""2.3. The Notion of Connection""; ""2.4. The Algebraic De Rham Complex and the Notion of Curvature""; ""3. The Abstract Equivalent Monadic Notion of Connection""; ""3.1. The Extension/Restriction of Scalars Monad-Comonad Pair""; ""3.2. Categorical Monadic Reformulation of Connections""; ""4. General Theory of Relativity from the ClassicalExtension/Restriction Monad-Comonad Pair"" Geometry, Differential Graph theory MATHEMATICS / Geometry / Differential bisacsh Geometry, Differential fast Graph theory fast Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Graphentheorie (DE-588)4113782-6 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Graphentheorie (DE-588)4113782-6 s 2\p DE-604 Differentialgeometrie (DE-588)4012248-7 s 3\p DE-604 Bernard, Lucas 1962- Sonstige oth Roux, François 1960- Sonstige oth 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Emerging topics on differential geometry and graph theory Geometry, Differential Graph theory MATHEMATICS / Geometry / Differential bisacsh Geometry, Differential fast Graph theory fast Differentialgeometrie (DE-588)4012248-7 gnd Graphentheorie (DE-588)4113782-6 gnd |
subject_GND | (DE-588)4012248-7 (DE-588)4113782-6 (DE-588)4143413-4 |
title | Emerging topics on differential geometry and graph theory |
title_auth | Emerging topics on differential geometry and graph theory |
title_exact_search | Emerging topics on differential geometry and graph theory |
title_full | Emerging topics on differential geometry and graph theory Lucas Bernard and François Roux, editors |
title_fullStr | Emerging topics on differential geometry and graph theory Lucas Bernard and François Roux, editors |
title_full_unstemmed | Emerging topics on differential geometry and graph theory Lucas Bernard and François Roux, editors |
title_short | Emerging topics on differential geometry and graph theory |
title_sort | emerging topics on differential geometry and graph theory |
topic | Geometry, Differential Graph theory MATHEMATICS / Geometry / Differential bisacsh Geometry, Differential fast Graph theory fast Differentialgeometrie (DE-588)4012248-7 gnd Graphentheorie (DE-588)4113782-6 gnd |
topic_facet | Geometry, Differential Graph theory MATHEMATICS / Geometry / Differential Differentialgeometrie Graphentheorie Aufsatzsammlung |
work_keys_str_mv | AT bernardlucas emergingtopicsondifferentialgeometryandgraphtheory AT rouxfrancois emergingtopicsondifferentialgeometryandgraphtheory |