Advances in statistical multisource-multitarget information fusion:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston
Artech House
[2014]
|
Schriftenreihe: | Artech House electronic warfare library
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 UER01 |
Beschreibung: | Includes bibliographical references and index Preface; Acknowledgments; Chapter 1 Introduction to the Book; 1.1 OVERVIEW OF FINITE-SET STATISTICS; 1.2 RECENT ADVANCES IN FINITE-SET STATISTICS; 1.3 ORGANIZATION OF THE BOOK; Part I Elements of Finite-Set Statistics; Chapter 2 Random Finite Sets; 2.1 INTRODUCTION; 2.2 SINGLE-SENSOR, SINGLE-TARGET STATISTICS; 2.3 RANDOM FINITE SETS (RFSs); 2.4 MULTIOBJECT STATISTICS IN A NUTSHELL; Chapter 3 Multiobject Calculus; 3.1 INTRODUCTION; 3.2 BASIC CONCEPTS; 3.3 SET INTEGRALS; 3.4 MULTIOBJECT DIFFERENTIAL CALCULUS; 3.5 KEY FORMULAS OF MULTIOBJECT CALCULUS Chapter 4 Multiobject Statistics4.1 INTRODUCTION; 4.2 BASIC MULTIOBJECT STATISTICAL DESCRIPTORS; 4.3 IMPORTANT MULTIOBJECT PROCESSES; 4.4 BASIC DERIVED RFSs; Chapter 5 Multiobject Modeling and Filtering; 5.1 INTRODUCTION; 5.2 THE MULTISENSOR-MULTITARGET BAYES FILTER; 5.3 MULTITARGET BAYES OPTIMALITY; 5.4 RFS MULTITARGET MOTION MODELS; 5.5 RFS MULTITARGET MEASUREMENT MODELS; 5.6 MULTITARGET MARKOV DENSITIES; 5.7 MULTISENSOR-MULTITARGET LIKELIHOOD FUNCTIONS; 5.8 THE MULTITARGET BAYES FILTER IN p.g.fl. FORM; 5.9 THE FACTORED MULTITARGET BAYES FILTER; 5.10 APPROXIMATE MULTITARGET FILTERS Chapter 6 Multiobject Metrology6.1 INTRODUCTION; 6.2 MULTIOBJECT MISS DISTANCE; 6.3 MULTIOBJECT INFORMATION FUNCTIONALS; Part II RFS Filters: StandardMeasurement Model; Chapter 7 Introduction to Part II; 7.1 SUMMARY OF MAJOR LESSONS LEARNED; 7.2 STANDARD MULTITARGET MEASUREMENT MODEL; 7.3 AN APPROXIMATE STANDARD LIKELIHOOD FUNCTION; 7.4 STANDARD MULTITARGET MOTION MODEL; 7.5 STANDARD MOTION MODEL WITH TARGET SPAWNING; 7.6 ORGANIZATION OF PART II; Chapter 8 Classical PHD and CPHD Filters; 8.1 INTRODUCTION; 8.2 A GENERAL PHD FILTER; 8.3 ARBITRARY-CLUTTER PHD FILTER; 8.4 CLASSICAL PHD FILTER 8.5 CLASSICAL CARDINALIZED PHD (CPHD) FILTER8.6 ZERO FALSE ALARMS (ZFA) CPHD FILTER; 8.7 PHD FILTER FOR STATE-DEPENDENT POISSON CLUTTER; Chapter 9 Implementing Classical PHD/CPHDFilters; 9.1 INTRODUCTION; 9.2 "SPOOKY ACTION AT A DISTANCE"; 9.3 MERGING AND SPLITTING FOR PHD FILTERS; 9.4 MERGING AND SPLITTING FOR CPHD FILTERS; 9.5 GAUSSIAN MIXTURE (GM) IMPLEMENTATION; 9.6 SEQUENTIAL MONTE CARLO (SMC) IMPLEMENTATION; Chapter 10 Multisensor PHD and CPHD Filters; 10.1 INTRODUCTION; 10.2 THE MULTISENSOR-MULTITARGET BAYES FILTER; 10.3 THE GENERAL MULTISENSOR PHD FILTER 10.4 THE MULTISENSOR CLASSICAL PHD FILTER10.5 ITERATED-CORRECTOR MULTISENSOR PHD/CPHD FILTERS; 10.6 PARALLEL COMBINATION MULTISENSOR PHD AND CPHD FILTERS; 10.7 AN ERRONEOUS "AVERAGED" MULTISENSOR PHD FILTER; 10.8 PERFORMANCE COMPARISONS; Chapter 11 Jump-Markov PHD/CPHD Filters; 11.1 INTRODUCTION; 11.2 JUMP-MARKOV FILTERS: A REVIEW; 11.3 MULTITARGET JUMP-MARKOV SYSTEMS; 11.4 JUMP-MARKOV PHD FILTER; 11.5 JUMP-MARKOV CPHD FILTER; 11.6 VARIABLE STATE SPACE JUMP-MARKOV CPHD FILTERS; 11.7 IMPLEMENTING JUMP-MARKOV PHD/CPHD FILTERS; 11.8 IMPLEMENTED JUMP-MARKOV PHD/CPHD FILTERS This is the sequel to the 2007 Artech House bestselling title, Statistical Multisource-Multitarget Information Fusion. That earlier book was a comprehensive resource for an in-depth understanding of finite-set statistics (FISST), a unified, systematic, and Bayesian approach to information fusion. The cardinalized probability hypothesis density (CPHD) filter, which was first systematically described in the earlier book, has since become a standard multitarget detection and tracking technique, especially in research and development.Since 2007, FISST has inspired a considerable amount of research |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9781608077991 1608077993 1608077985 9781608077984 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043960853 | ||
003 | DE-604 | ||
005 | 20191009 | ||
007 | cr|uuu---uuuuu | ||
008 | 161213s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781608077991 |9 978-1-60807-799-1 | ||
020 | |a 1608077993 |9 1-60807-799-3 | ||
020 | |a 1608077985 |9 1-60807-798-5 | ||
020 | |a 9781608077984 |9 978-1-60807-798-4 | ||
035 | |a (ZDB-4-EBA)ocn935983055 | ||
035 | |a (OCoLC)935983055 | ||
035 | |a (DE-599)BVBBV043960853 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1047 |a DE-1046 |a DE-29 | ||
082 | 0 | |a 006.3/3 |2 23 | |
100 | 1 | |a Mahler, Ronald P. S. |e Verfasser |0 (DE-588)1060136198 |4 aut | |
245 | 1 | 0 | |a Advances in statistical multisource-multitarget information fusion |c Ronald P.S. Mahler |
264 | 1 | |a Boston |b Artech House |c [2014] | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Artech House electronic warfare library | |
500 | |a Includes bibliographical references and index | ||
500 | |a Preface; Acknowledgments; Chapter 1 Introduction to the Book; 1.1 OVERVIEW OF FINITE-SET STATISTICS; 1.2 RECENT ADVANCES IN FINITE-SET STATISTICS; 1.3 ORGANIZATION OF THE BOOK; Part I Elements of Finite-Set Statistics; Chapter 2 Random Finite Sets; 2.1 INTRODUCTION; 2.2 SINGLE-SENSOR, SINGLE-TARGET STATISTICS; 2.3 RANDOM FINITE SETS (RFSs); 2.4 MULTIOBJECT STATISTICS IN A NUTSHELL; Chapter 3 Multiobject Calculus; 3.1 INTRODUCTION; 3.2 BASIC CONCEPTS; 3.3 SET INTEGRALS; 3.4 MULTIOBJECT DIFFERENTIAL CALCULUS; 3.5 KEY FORMULAS OF MULTIOBJECT CALCULUS | ||
500 | |a Chapter 4 Multiobject Statistics4.1 INTRODUCTION; 4.2 BASIC MULTIOBJECT STATISTICAL DESCRIPTORS; 4.3 IMPORTANT MULTIOBJECT PROCESSES; 4.4 BASIC DERIVED RFSs; Chapter 5 Multiobject Modeling and Filtering; 5.1 INTRODUCTION; 5.2 THE MULTISENSOR-MULTITARGET BAYES FILTER; 5.3 MULTITARGET BAYES OPTIMALITY; 5.4 RFS MULTITARGET MOTION MODELS; 5.5 RFS MULTITARGET MEASUREMENT MODELS; 5.6 MULTITARGET MARKOV DENSITIES; 5.7 MULTISENSOR-MULTITARGET LIKELIHOOD FUNCTIONS; 5.8 THE MULTITARGET BAYES FILTER IN p.g.fl. FORM; 5.9 THE FACTORED MULTITARGET BAYES FILTER; 5.10 APPROXIMATE MULTITARGET FILTERS | ||
500 | |a Chapter 6 Multiobject Metrology6.1 INTRODUCTION; 6.2 MULTIOBJECT MISS DISTANCE; 6.3 MULTIOBJECT INFORMATION FUNCTIONALS; Part II RFS Filters: StandardMeasurement Model; Chapter 7 Introduction to Part II; 7.1 SUMMARY OF MAJOR LESSONS LEARNED; 7.2 STANDARD MULTITARGET MEASUREMENT MODEL; 7.3 AN APPROXIMATE STANDARD LIKELIHOOD FUNCTION; 7.4 STANDARD MULTITARGET MOTION MODEL; 7.5 STANDARD MOTION MODEL WITH TARGET SPAWNING; 7.6 ORGANIZATION OF PART II; Chapter 8 Classical PHD and CPHD Filters; 8.1 INTRODUCTION; 8.2 A GENERAL PHD FILTER; 8.3 ARBITRARY-CLUTTER PHD FILTER; 8.4 CLASSICAL PHD FILTER | ||
500 | |a 8.5 CLASSICAL CARDINALIZED PHD (CPHD) FILTER8.6 ZERO FALSE ALARMS (ZFA) CPHD FILTER; 8.7 PHD FILTER FOR STATE-DEPENDENT POISSON CLUTTER; Chapter 9 Implementing Classical PHD/CPHDFilters; 9.1 INTRODUCTION; 9.2 "SPOOKY ACTION AT A DISTANCE"; 9.3 MERGING AND SPLITTING FOR PHD FILTERS; 9.4 MERGING AND SPLITTING FOR CPHD FILTERS; 9.5 GAUSSIAN MIXTURE (GM) IMPLEMENTATION; 9.6 SEQUENTIAL MONTE CARLO (SMC) IMPLEMENTATION; Chapter 10 Multisensor PHD and CPHD Filters; 10.1 INTRODUCTION; 10.2 THE MULTISENSOR-MULTITARGET BAYES FILTER; 10.3 THE GENERAL MULTISENSOR PHD FILTER | ||
500 | |a 10.4 THE MULTISENSOR CLASSICAL PHD FILTER10.5 ITERATED-CORRECTOR MULTISENSOR PHD/CPHD FILTERS; 10.6 PARALLEL COMBINATION MULTISENSOR PHD AND CPHD FILTERS; 10.7 AN ERRONEOUS "AVERAGED" MULTISENSOR PHD FILTER; 10.8 PERFORMANCE COMPARISONS; Chapter 11 Jump-Markov PHD/CPHD Filters; 11.1 INTRODUCTION; 11.2 JUMP-MARKOV FILTERS: A REVIEW; 11.3 MULTITARGET JUMP-MARKOV SYSTEMS; 11.4 JUMP-MARKOV PHD FILTER; 11.5 JUMP-MARKOV CPHD FILTER; 11.6 VARIABLE STATE SPACE JUMP-MARKOV CPHD FILTERS; 11.7 IMPLEMENTING JUMP-MARKOV PHD/CPHD FILTERS; 11.8 IMPLEMENTED JUMP-MARKOV PHD/CPHD FILTERS | ||
500 | |a This is the sequel to the 2007 Artech House bestselling title, Statistical Multisource-Multitarget Information Fusion. That earlier book was a comprehensive resource for an in-depth understanding of finite-set statistics (FISST), a unified, systematic, and Bayesian approach to information fusion. The cardinalized probability hypothesis density (CPHD) filter, which was first systematically described in the earlier book, has since become a standard multitarget detection and tracking technique, especially in research and development.Since 2007, FISST has inspired a considerable amount of research | ||
650 | 7 | |a COMPUTERS / General |2 bisacsh | |
650 | 7 | |a Bayesian statistical decision theory |2 fast | |
650 | 7 | |a Expert systems (Computer science) |2 fast | |
650 | 7 | |a Multisensor data fusion / Mathematics |2 fast | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Expert systems (Computer science) | |
650 | 4 | |a Multisensor data fusion |x Mathematics | |
650 | 4 | |a Bayesian statistical decision theory | |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029369557 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1155213 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1155213 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1155213 |l UER01 |p ZDB-4-EBA |q UER_PDA_EBA_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176918075932672 |
---|---|
any_adam_object | |
author | Mahler, Ronald P. S. |
author_GND | (DE-588)1060136198 |
author_facet | Mahler, Ronald P. S. |
author_role | aut |
author_sort | Mahler, Ronald P. S. |
author_variant | r p s m rps rpsm |
building | Verbundindex |
bvnumber | BV043960853 |
collection | ZDB-4-EBA |
ctrlnum | (ZDB-4-EBA)ocn935983055 (OCoLC)935983055 (DE-599)BVBBV043960853 |
dewey-full | 006.3/3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/3 |
dewey-search | 006.3/3 |
dewey-sort | 16.3 13 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05583nmm a2200553zc 4500</leader><controlfield tag="001">BV043960853</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191009 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161213s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781608077991</subfield><subfield code="9">978-1-60807-799-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1608077993</subfield><subfield code="9">1-60807-799-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1608077985</subfield><subfield code="9">1-60807-798-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781608077984</subfield><subfield code="9">978-1-60807-798-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn935983055</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)935983055</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043960853</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1047</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-29</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mahler, Ronald P. S.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1060136198</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in statistical multisource-multitarget information fusion</subfield><subfield code="c">Ronald P.S. Mahler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston</subfield><subfield code="b">Artech House</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Artech House electronic warfare library</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface; Acknowledgments; Chapter 1 Introduction to the Book; 1.1 OVERVIEW OF FINITE-SET STATISTICS; 1.2 RECENT ADVANCES IN FINITE-SET STATISTICS; 1.3 ORGANIZATION OF THE BOOK; Part I Elements of Finite-Set Statistics; Chapter 2 Random Finite Sets; 2.1 INTRODUCTION; 2.2 SINGLE-SENSOR, SINGLE-TARGET STATISTICS; 2.3 RANDOM FINITE SETS (RFSs); 2.4 MULTIOBJECT STATISTICS IN A NUTSHELL; Chapter 3 Multiobject Calculus; 3.1 INTRODUCTION; 3.2 BASIC CONCEPTS; 3.3 SET INTEGRALS; 3.4 MULTIOBJECT DIFFERENTIAL CALCULUS; 3.5 KEY FORMULAS OF MULTIOBJECT CALCULUS</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 4 Multiobject Statistics4.1 INTRODUCTION; 4.2 BASIC MULTIOBJECT STATISTICAL DESCRIPTORS; 4.3 IMPORTANT MULTIOBJECT PROCESSES; 4.4 BASIC DERIVED RFSs; Chapter 5 Multiobject Modeling and Filtering; 5.1 INTRODUCTION; 5.2 THE MULTISENSOR-MULTITARGET BAYES FILTER; 5.3 MULTITARGET BAYES OPTIMALITY; 5.4 RFS MULTITARGET MOTION MODELS; 5.5 RFS MULTITARGET MEASUREMENT MODELS; 5.6 MULTITARGET MARKOV DENSITIES; 5.7 MULTISENSOR-MULTITARGET LIKELIHOOD FUNCTIONS; 5.8 THE MULTITARGET BAYES FILTER IN p.g.fl. FORM; 5.9 THE FACTORED MULTITARGET BAYES FILTER; 5.10 APPROXIMATE MULTITARGET FILTERS</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 6 Multiobject Metrology6.1 INTRODUCTION; 6.2 MULTIOBJECT MISS DISTANCE; 6.3 MULTIOBJECT INFORMATION FUNCTIONALS; Part II RFS Filters: StandardMeasurement Model; Chapter 7 Introduction to Part II; 7.1 SUMMARY OF MAJOR LESSONS LEARNED; 7.2 STANDARD MULTITARGET MEASUREMENT MODEL; 7.3 AN APPROXIMATE STANDARD LIKELIHOOD FUNCTION; 7.4 STANDARD MULTITARGET MOTION MODEL; 7.5 STANDARD MOTION MODEL WITH TARGET SPAWNING; 7.6 ORGANIZATION OF PART II; Chapter 8 Classical PHD and CPHD Filters; 8.1 INTRODUCTION; 8.2 A GENERAL PHD FILTER; 8.3 ARBITRARY-CLUTTER PHD FILTER; 8.4 CLASSICAL PHD FILTER</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">8.5 CLASSICAL CARDINALIZED PHD (CPHD) FILTER8.6 ZERO FALSE ALARMS (ZFA) CPHD FILTER; 8.7 PHD FILTER FOR STATE-DEPENDENT POISSON CLUTTER; Chapter 9 Implementing Classical PHD/CPHDFilters; 9.1 INTRODUCTION; 9.2 "SPOOKY ACTION AT A DISTANCE"; 9.3 MERGING AND SPLITTING FOR PHD FILTERS; 9.4 MERGING AND SPLITTING FOR CPHD FILTERS; 9.5 GAUSSIAN MIXTURE (GM) IMPLEMENTATION; 9.6 SEQUENTIAL MONTE CARLO (SMC) IMPLEMENTATION; Chapter 10 Multisensor PHD and CPHD Filters; 10.1 INTRODUCTION; 10.2 THE MULTISENSOR-MULTITARGET BAYES FILTER; 10.3 THE GENERAL MULTISENSOR PHD FILTER</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">10.4 THE MULTISENSOR CLASSICAL PHD FILTER10.5 ITERATED-CORRECTOR MULTISENSOR PHD/CPHD FILTERS; 10.6 PARALLEL COMBINATION MULTISENSOR PHD AND CPHD FILTERS; 10.7 AN ERRONEOUS "AVERAGED" MULTISENSOR PHD FILTER; 10.8 PERFORMANCE COMPARISONS; Chapter 11 Jump-Markov PHD/CPHD Filters; 11.1 INTRODUCTION; 11.2 JUMP-MARKOV FILTERS: A REVIEW; 11.3 MULTITARGET JUMP-MARKOV SYSTEMS; 11.4 JUMP-MARKOV PHD FILTER; 11.5 JUMP-MARKOV CPHD FILTER; 11.6 VARIABLE STATE SPACE JUMP-MARKOV CPHD FILTERS; 11.7 IMPLEMENTING JUMP-MARKOV PHD/CPHD FILTERS; 11.8 IMPLEMENTED JUMP-MARKOV PHD/CPHD FILTERS</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is the sequel to the 2007 Artech House bestselling title, Statistical Multisource-Multitarget Information Fusion. That earlier book was a comprehensive resource for an in-depth understanding of finite-set statistics (FISST), a unified, systematic, and Bayesian approach to information fusion. The cardinalized probability hypothesis density (CPHD) filter, which was first systematically described in the earlier book, has since become a standard multitarget detection and tracking technique, especially in research and development.Since 2007, FISST has inspired a considerable amount of research</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bayesian statistical decision theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Expert systems (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multisensor data fusion / Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Expert systems (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multisensor data fusion</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029369557</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1155213</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1155213</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1155213</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">UER_PDA_EBA_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043960853 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:48Z |
institution | BVB |
isbn | 9781608077991 1608077993 1608077985 9781608077984 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029369557 |
oclc_num | 935983055 |
open_access_boolean | |
owner | DE-1047 DE-1046 DE-29 |
owner_facet | DE-1047 DE-1046 DE-29 |
physical | 1 Online-Ressource |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA ZDB-4-EBA UER_PDA_EBA_Kauf |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Artech House |
record_format | marc |
series2 | Artech House electronic warfare library |
spelling | Mahler, Ronald P. S. Verfasser (DE-588)1060136198 aut Advances in statistical multisource-multitarget information fusion Ronald P.S. Mahler Boston Artech House [2014] 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Artech House electronic warfare library Includes bibliographical references and index Preface; Acknowledgments; Chapter 1 Introduction to the Book; 1.1 OVERVIEW OF FINITE-SET STATISTICS; 1.2 RECENT ADVANCES IN FINITE-SET STATISTICS; 1.3 ORGANIZATION OF THE BOOK; Part I Elements of Finite-Set Statistics; Chapter 2 Random Finite Sets; 2.1 INTRODUCTION; 2.2 SINGLE-SENSOR, SINGLE-TARGET STATISTICS; 2.3 RANDOM FINITE SETS (RFSs); 2.4 MULTIOBJECT STATISTICS IN A NUTSHELL; Chapter 3 Multiobject Calculus; 3.1 INTRODUCTION; 3.2 BASIC CONCEPTS; 3.3 SET INTEGRALS; 3.4 MULTIOBJECT DIFFERENTIAL CALCULUS; 3.5 KEY FORMULAS OF MULTIOBJECT CALCULUS Chapter 4 Multiobject Statistics4.1 INTRODUCTION; 4.2 BASIC MULTIOBJECT STATISTICAL DESCRIPTORS; 4.3 IMPORTANT MULTIOBJECT PROCESSES; 4.4 BASIC DERIVED RFSs; Chapter 5 Multiobject Modeling and Filtering; 5.1 INTRODUCTION; 5.2 THE MULTISENSOR-MULTITARGET BAYES FILTER; 5.3 MULTITARGET BAYES OPTIMALITY; 5.4 RFS MULTITARGET MOTION MODELS; 5.5 RFS MULTITARGET MEASUREMENT MODELS; 5.6 MULTITARGET MARKOV DENSITIES; 5.7 MULTISENSOR-MULTITARGET LIKELIHOOD FUNCTIONS; 5.8 THE MULTITARGET BAYES FILTER IN p.g.fl. FORM; 5.9 THE FACTORED MULTITARGET BAYES FILTER; 5.10 APPROXIMATE MULTITARGET FILTERS Chapter 6 Multiobject Metrology6.1 INTRODUCTION; 6.2 MULTIOBJECT MISS DISTANCE; 6.3 MULTIOBJECT INFORMATION FUNCTIONALS; Part II RFS Filters: StandardMeasurement Model; Chapter 7 Introduction to Part II; 7.1 SUMMARY OF MAJOR LESSONS LEARNED; 7.2 STANDARD MULTITARGET MEASUREMENT MODEL; 7.3 AN APPROXIMATE STANDARD LIKELIHOOD FUNCTION; 7.4 STANDARD MULTITARGET MOTION MODEL; 7.5 STANDARD MOTION MODEL WITH TARGET SPAWNING; 7.6 ORGANIZATION OF PART II; Chapter 8 Classical PHD and CPHD Filters; 8.1 INTRODUCTION; 8.2 A GENERAL PHD FILTER; 8.3 ARBITRARY-CLUTTER PHD FILTER; 8.4 CLASSICAL PHD FILTER 8.5 CLASSICAL CARDINALIZED PHD (CPHD) FILTER8.6 ZERO FALSE ALARMS (ZFA) CPHD FILTER; 8.7 PHD FILTER FOR STATE-DEPENDENT POISSON CLUTTER; Chapter 9 Implementing Classical PHD/CPHDFilters; 9.1 INTRODUCTION; 9.2 "SPOOKY ACTION AT A DISTANCE"; 9.3 MERGING AND SPLITTING FOR PHD FILTERS; 9.4 MERGING AND SPLITTING FOR CPHD FILTERS; 9.5 GAUSSIAN MIXTURE (GM) IMPLEMENTATION; 9.6 SEQUENTIAL MONTE CARLO (SMC) IMPLEMENTATION; Chapter 10 Multisensor PHD and CPHD Filters; 10.1 INTRODUCTION; 10.2 THE MULTISENSOR-MULTITARGET BAYES FILTER; 10.3 THE GENERAL MULTISENSOR PHD FILTER 10.4 THE MULTISENSOR CLASSICAL PHD FILTER10.5 ITERATED-CORRECTOR MULTISENSOR PHD/CPHD FILTERS; 10.6 PARALLEL COMBINATION MULTISENSOR PHD AND CPHD FILTERS; 10.7 AN ERRONEOUS "AVERAGED" MULTISENSOR PHD FILTER; 10.8 PERFORMANCE COMPARISONS; Chapter 11 Jump-Markov PHD/CPHD Filters; 11.1 INTRODUCTION; 11.2 JUMP-MARKOV FILTERS: A REVIEW; 11.3 MULTITARGET JUMP-MARKOV SYSTEMS; 11.4 JUMP-MARKOV PHD FILTER; 11.5 JUMP-MARKOV CPHD FILTER; 11.6 VARIABLE STATE SPACE JUMP-MARKOV CPHD FILTERS; 11.7 IMPLEMENTING JUMP-MARKOV PHD/CPHD FILTERS; 11.8 IMPLEMENTED JUMP-MARKOV PHD/CPHD FILTERS This is the sequel to the 2007 Artech House bestselling title, Statistical Multisource-Multitarget Information Fusion. That earlier book was a comprehensive resource for an in-depth understanding of finite-set statistics (FISST), a unified, systematic, and Bayesian approach to information fusion. The cardinalized probability hypothesis density (CPHD) filter, which was first systematically described in the earlier book, has since become a standard multitarget detection and tracking technique, especially in research and development.Since 2007, FISST has inspired a considerable amount of research COMPUTERS / General bisacsh Bayesian statistical decision theory fast Expert systems (Computer science) fast Multisensor data fusion / Mathematics fast Mathematik Expert systems (Computer science) Multisensor data fusion Mathematics Bayesian statistical decision theory |
spellingShingle | Mahler, Ronald P. S. Advances in statistical multisource-multitarget information fusion COMPUTERS / General bisacsh Bayesian statistical decision theory fast Expert systems (Computer science) fast Multisensor data fusion / Mathematics fast Mathematik Expert systems (Computer science) Multisensor data fusion Mathematics Bayesian statistical decision theory |
title | Advances in statistical multisource-multitarget information fusion |
title_auth | Advances in statistical multisource-multitarget information fusion |
title_exact_search | Advances in statistical multisource-multitarget information fusion |
title_full | Advances in statistical multisource-multitarget information fusion Ronald P.S. Mahler |
title_fullStr | Advances in statistical multisource-multitarget information fusion Ronald P.S. Mahler |
title_full_unstemmed | Advances in statistical multisource-multitarget information fusion Ronald P.S. Mahler |
title_short | Advances in statistical multisource-multitarget information fusion |
title_sort | advances in statistical multisource multitarget information fusion |
topic | COMPUTERS / General bisacsh Bayesian statistical decision theory fast Expert systems (Computer science) fast Multisensor data fusion / Mathematics fast Mathematik Expert systems (Computer science) Multisensor data fusion Mathematics Bayesian statistical decision theory |
topic_facet | COMPUTERS / General Bayesian statistical decision theory Expert systems (Computer science) Multisensor data fusion / Mathematics Mathematik Multisensor data fusion Mathematics |
work_keys_str_mv | AT mahlerronaldps advancesinstatisticalmultisourcemultitargetinformationfusion |