Distribution Theory: Convolution, Fourier Transform, and Laplace Transform
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
De Gruyter
2013
|
Schriftenreihe: | De Gruyter textbook
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 |
Beschreibung: | Preface; 1 Introduction; 2 Definition and First Properties of Distributions; 2.1 Test Functions; 2.2 Distributions; 2.3 Support of a Distribution; 3 Differentiating Distributions; 3.1 Definition and Properties; 3.2 Examples; 3.3 The Distributions x+?-1(??0,-1,-2 ...)*; 3.4 Exercises; 3.5 Green's Formula and Harmonic Functions; 3.6 Exercises; 4 Multiplication and Convergence of Distributions; 4.1 Multiplication with a C8 Function; 4.2 Exercises; 4.3 Convergence in D'; 4.4 Exercises; 5 Distributions with Compact Support; 5.1 Definition and Properties; 5.2 Distributions Supported at the Origin 5.3 Taylor's Formula for Rn5.4 Structure of a Distribution*; 6 Convolution of Distributions; 6.1 Tensor Product of Distributions; 6.2 Convolution Product of Distributions; 6.3 Associativity of the Convolution Product; 6.4 Exercises; 6.5 Newton Potentials and Harmonic Functions; 6.6 Convolution Equations; 6.7 Symbolic Calculus of Heaviside; 6.8 Volterra Integral Equations of the Second Kind; 6.9 Exercises; 6.10 Systems of Convolution Equations*; 6.11 Exercises; 7 The Fourier Transform; 7.1 Fourier Transform of a Function on R; 7.2 The Inversion Theorem; 7.3 Plancherel's Theorem 7.4 Differentiability Properties7.5 The Schwartz Space S(R); 7.6 The Space of Tempered Distributions S'(R); 7.7 Structure of a Tempered Distribution*; 7.8 Fourier Transform of a Tempered Distribution; 7.9 Paley Wiener Theorems on R*; 7.10 Exercises; 7.11 Fourier Transform in Rn; 7.12 The Heat or Diffusion Equation in One Dimension; 8 The Laplace Transform; 8.1 Laplace Transform of a Function; 8.2 Laplace Transform of a Distribution; 8.3 Laplace Transform and Convolution; 8.4 Inversion Formula for the Laplace Transform; 9 Summable Distributions*; 9.1 Definition and Main Properties 9.2 The Iterated Poisson Equation9.3 Proof of the Main Theorem; 9.4 Canonical Extension of a Summable Distribution; 9.5 Rank of a Distribution; 10 Appendix; 10.1 The Banach Steinhaus Theorem; 10.2 The Beta and Gamma Function; 11 Hints to the Exercises; References; Index The theory of distributions has numerous applications and is extensively used in mathematics, physics and engineering. There is however relatively little elementary expository literature on distribution theory. This book is intended as an introduction. Starting with the elementary theory of distributions, it proceeds to convolution products of distributions, Fourier and Laplace transforms, tempered distributions, summable distributions and applications. The theory is illustrated by several examples, mostly beginning with the case of the real line and then followed by examples in higher dimensi |
Beschreibung: | 120 pages |
ISBN: | 9783110298512 3110298511 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043960377 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161213s2013 |||| o||u| ||||||eng d | ||
020 | |a 9783110298512 |9 978-3-11-029851-2 | ||
020 | |a 3110298511 |9 3-11-029851-1 | ||
035 | |a (ZDB-4-EBA)ocn851970512 | ||
035 | |a (OCoLC)851970512 | ||
035 | |a (DE-599)BVBBV043960377 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1047 |a DE-1046 | ||
082 | 0 | |a 515.782 | |
100 | 1 | |a Dijk, Gerrit |e Verfasser |4 aut | |
245 | 1 | 0 | |a Distribution Theory |b Convolution, Fourier Transform, and Laplace Transform |
264 | 1 | |a Berlin |b De Gruyter |c 2013 | |
300 | |a 120 pages | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter textbook | |
500 | |a Preface; 1 Introduction; 2 Definition and First Properties of Distributions; 2.1 Test Functions; 2.2 Distributions; 2.3 Support of a Distribution; 3 Differentiating Distributions; 3.1 Definition and Properties; 3.2 Examples; 3.3 The Distributions x+?-1(??0,-1,-2 ...)*; 3.4 Exercises; 3.5 Green's Formula and Harmonic Functions; 3.6 Exercises; 4 Multiplication and Convergence of Distributions; 4.1 Multiplication with a C8 Function; 4.2 Exercises; 4.3 Convergence in D'; 4.4 Exercises; 5 Distributions with Compact Support; 5.1 Definition and Properties; 5.2 Distributions Supported at the Origin | ||
500 | |a 5.3 Taylor's Formula for Rn5.4 Structure of a Distribution*; 6 Convolution of Distributions; 6.1 Tensor Product of Distributions; 6.2 Convolution Product of Distributions; 6.3 Associativity of the Convolution Product; 6.4 Exercises; 6.5 Newton Potentials and Harmonic Functions; 6.6 Convolution Equations; 6.7 Symbolic Calculus of Heaviside; 6.8 Volterra Integral Equations of the Second Kind; 6.9 Exercises; 6.10 Systems of Convolution Equations*; 6.11 Exercises; 7 The Fourier Transform; 7.1 Fourier Transform of a Function on R; 7.2 The Inversion Theorem; 7.3 Plancherel's Theorem | ||
500 | |a 7.4 Differentiability Properties7.5 The Schwartz Space S(R); 7.6 The Space of Tempered Distributions S'(R); 7.7 Structure of a Tempered Distribution*; 7.8 Fourier Transform of a Tempered Distribution; 7.9 Paley Wiener Theorems on R*; 7.10 Exercises; 7.11 Fourier Transform in Rn; 7.12 The Heat or Diffusion Equation in One Dimension; 8 The Laplace Transform; 8.1 Laplace Transform of a Function; 8.2 Laplace Transform of a Distribution; 8.3 Laplace Transform and Convolution; 8.4 Inversion Formula for the Laplace Transform; 9 Summable Distributions*; 9.1 Definition and Main Properties | ||
500 | |a 9.2 The Iterated Poisson Equation9.3 Proof of the Main Theorem; 9.4 Canonical Extension of a Summable Distribution; 9.5 Rank of a Distribution; 10 Appendix; 10.1 The Banach Steinhaus Theorem; 10.2 The Beta and Gamma Function; 11 Hints to the Exercises; References; Index | ||
500 | |a The theory of distributions has numerous applications and is extensively used in mathematics, physics and engineering. There is however relatively little elementary expository literature on distribution theory. This book is intended as an introduction. Starting with the elementary theory of distributions, it proceeds to convolution products of distributions, Fourier and Laplace transforms, tempered distributions, summable distributions and applications. The theory is illustrated by several examples, mostly beginning with the case of the real line and then followed by examples in higher dimensi | ||
650 | 7 | |a MATHEMATICS / Functional Analysis |2 bisacsh | |
650 | 7 | |a Theory of distributions (Functional analysis) |2 fast | |
650 | 4 | |a Theory of distributions (Functional analysis) | |
650 | 0 | 7 | |a Distributionstheorie |0 (DE-588)4150254-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Distributionstheorie |0 (DE-588)4150254-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029369080 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=604263 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=604263 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176917150040064 |
---|---|
any_adam_object | |
author | Dijk, Gerrit |
author_facet | Dijk, Gerrit |
author_role | aut |
author_sort | Dijk, Gerrit |
author_variant | g d gd |
building | Verbundindex |
bvnumber | BV043960377 |
collection | ZDB-4-EBA |
ctrlnum | (ZDB-4-EBA)ocn851970512 (OCoLC)851970512 (DE-599)BVBBV043960377 |
dewey-full | 515.782 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.782 |
dewey-search | 515.782 |
dewey-sort | 3515.782 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04355nmm a2200481zc 4500</leader><controlfield tag="001">BV043960377</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161213s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110298512</subfield><subfield code="9">978-3-11-029851-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110298511</subfield><subfield code="9">3-11-029851-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn851970512</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)851970512</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043960377</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1047</subfield><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.782</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dijk, Gerrit</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distribution Theory</subfield><subfield code="b">Convolution, Fourier Transform, and Laplace Transform</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">120 pages</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter textbook</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface; 1 Introduction; 2 Definition and First Properties of Distributions; 2.1 Test Functions; 2.2 Distributions; 2.3 Support of a Distribution; 3 Differentiating Distributions; 3.1 Definition and Properties; 3.2 Examples; 3.3 The Distributions x+?-1(??0,-1,-2 ...)*; 3.4 Exercises; 3.5 Green's Formula and Harmonic Functions; 3.6 Exercises; 4 Multiplication and Convergence of Distributions; 4.1 Multiplication with a C8 Function; 4.2 Exercises; 4.3 Convergence in D'; 4.4 Exercises; 5 Distributions with Compact Support; 5.1 Definition and Properties; 5.2 Distributions Supported at the Origin</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">5.3 Taylor's Formula for Rn5.4 Structure of a Distribution*; 6 Convolution of Distributions; 6.1 Tensor Product of Distributions; 6.2 Convolution Product of Distributions; 6.3 Associativity of the Convolution Product; 6.4 Exercises; 6.5 Newton Potentials and Harmonic Functions; 6.6 Convolution Equations; 6.7 Symbolic Calculus of Heaviside; 6.8 Volterra Integral Equations of the Second Kind; 6.9 Exercises; 6.10 Systems of Convolution Equations*; 6.11 Exercises; 7 The Fourier Transform; 7.1 Fourier Transform of a Function on R; 7.2 The Inversion Theorem; 7.3 Plancherel's Theorem</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">7.4 Differentiability Properties7.5 The Schwartz Space S(R); 7.6 The Space of Tempered Distributions S'(R); 7.7 Structure of a Tempered Distribution*; 7.8 Fourier Transform of a Tempered Distribution; 7.9 Paley Wiener Theorems on R*; 7.10 Exercises; 7.11 Fourier Transform in Rn; 7.12 The Heat or Diffusion Equation in One Dimension; 8 The Laplace Transform; 8.1 Laplace Transform of a Function; 8.2 Laplace Transform of a Distribution; 8.3 Laplace Transform and Convolution; 8.4 Inversion Formula for the Laplace Transform; 9 Summable Distributions*; 9.1 Definition and Main Properties</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">9.2 The Iterated Poisson Equation9.3 Proof of the Main Theorem; 9.4 Canonical Extension of a Summable Distribution; 9.5 Rank of a Distribution; 10 Appendix; 10.1 The Banach Steinhaus Theorem; 10.2 The Beta and Gamma Function; 11 Hints to the Exercises; References; Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The theory of distributions has numerous applications and is extensively used in mathematics, physics and engineering. There is however relatively little elementary expository literature on distribution theory. This book is intended as an introduction. Starting with the elementary theory of distributions, it proceeds to convolution products of distributions, Fourier and Laplace transforms, tempered distributions, summable distributions and applications. The theory is illustrated by several examples, mostly beginning with the case of the real line and then followed by examples in higher dimensi</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Functional Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Theory of distributions (Functional analysis)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory of distributions (Functional analysis)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Distributionstheorie</subfield><subfield code="0">(DE-588)4150254-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Distributionstheorie</subfield><subfield code="0">(DE-588)4150254-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029369080</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=604263</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=604263</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043960377 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:48Z |
institution | BVB |
isbn | 9783110298512 3110298511 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029369080 |
oclc_num | 851970512 |
open_access_boolean | |
owner | DE-1047 DE-1046 |
owner_facet | DE-1047 DE-1046 |
physical | 120 pages |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter textbook |
spelling | Dijk, Gerrit Verfasser aut Distribution Theory Convolution, Fourier Transform, and Laplace Transform Berlin De Gruyter 2013 120 pages txt rdacontent c rdamedia cr rdacarrier De Gruyter textbook Preface; 1 Introduction; 2 Definition and First Properties of Distributions; 2.1 Test Functions; 2.2 Distributions; 2.3 Support of a Distribution; 3 Differentiating Distributions; 3.1 Definition and Properties; 3.2 Examples; 3.3 The Distributions x+?-1(??0,-1,-2 ...)*; 3.4 Exercises; 3.5 Green's Formula and Harmonic Functions; 3.6 Exercises; 4 Multiplication and Convergence of Distributions; 4.1 Multiplication with a C8 Function; 4.2 Exercises; 4.3 Convergence in D'; 4.4 Exercises; 5 Distributions with Compact Support; 5.1 Definition and Properties; 5.2 Distributions Supported at the Origin 5.3 Taylor's Formula for Rn5.4 Structure of a Distribution*; 6 Convolution of Distributions; 6.1 Tensor Product of Distributions; 6.2 Convolution Product of Distributions; 6.3 Associativity of the Convolution Product; 6.4 Exercises; 6.5 Newton Potentials and Harmonic Functions; 6.6 Convolution Equations; 6.7 Symbolic Calculus of Heaviside; 6.8 Volterra Integral Equations of the Second Kind; 6.9 Exercises; 6.10 Systems of Convolution Equations*; 6.11 Exercises; 7 The Fourier Transform; 7.1 Fourier Transform of a Function on R; 7.2 The Inversion Theorem; 7.3 Plancherel's Theorem 7.4 Differentiability Properties7.5 The Schwartz Space S(R); 7.6 The Space of Tempered Distributions S'(R); 7.7 Structure of a Tempered Distribution*; 7.8 Fourier Transform of a Tempered Distribution; 7.9 Paley Wiener Theorems on R*; 7.10 Exercises; 7.11 Fourier Transform in Rn; 7.12 The Heat or Diffusion Equation in One Dimension; 8 The Laplace Transform; 8.1 Laplace Transform of a Function; 8.2 Laplace Transform of a Distribution; 8.3 Laplace Transform and Convolution; 8.4 Inversion Formula for the Laplace Transform; 9 Summable Distributions*; 9.1 Definition and Main Properties 9.2 The Iterated Poisson Equation9.3 Proof of the Main Theorem; 9.4 Canonical Extension of a Summable Distribution; 9.5 Rank of a Distribution; 10 Appendix; 10.1 The Banach Steinhaus Theorem; 10.2 The Beta and Gamma Function; 11 Hints to the Exercises; References; Index The theory of distributions has numerous applications and is extensively used in mathematics, physics and engineering. There is however relatively little elementary expository literature on distribution theory. This book is intended as an introduction. Starting with the elementary theory of distributions, it proceeds to convolution products of distributions, Fourier and Laplace transforms, tempered distributions, summable distributions and applications. The theory is illustrated by several examples, mostly beginning with the case of the real line and then followed by examples in higher dimensi MATHEMATICS / Functional Analysis bisacsh Theory of distributions (Functional analysis) fast Theory of distributions (Functional analysis) Distributionstheorie (DE-588)4150254-1 gnd rswk-swf Distributionstheorie (DE-588)4150254-1 s 1\p DE-604 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dijk, Gerrit Distribution Theory Convolution, Fourier Transform, and Laplace Transform MATHEMATICS / Functional Analysis bisacsh Theory of distributions (Functional analysis) fast Theory of distributions (Functional analysis) Distributionstheorie (DE-588)4150254-1 gnd |
subject_GND | (DE-588)4150254-1 |
title | Distribution Theory Convolution, Fourier Transform, and Laplace Transform |
title_auth | Distribution Theory Convolution, Fourier Transform, and Laplace Transform |
title_exact_search | Distribution Theory Convolution, Fourier Transform, and Laplace Transform |
title_full | Distribution Theory Convolution, Fourier Transform, and Laplace Transform |
title_fullStr | Distribution Theory Convolution, Fourier Transform, and Laplace Transform |
title_full_unstemmed | Distribution Theory Convolution, Fourier Transform, and Laplace Transform |
title_short | Distribution Theory |
title_sort | distribution theory convolution fourier transform and laplace transform |
title_sub | Convolution, Fourier Transform, and Laplace Transform |
topic | MATHEMATICS / Functional Analysis bisacsh Theory of distributions (Functional analysis) fast Theory of distributions (Functional analysis) Distributionstheorie (DE-588)4150254-1 gnd |
topic_facet | MATHEMATICS / Functional Analysis Theory of distributions (Functional analysis) Distributionstheorie |
work_keys_str_mv | AT dijkgerrit distributiontheoryconvolutionfouriertransformandlaplacetransform |