An introduction to homological algebra:
Homological algebra, because of its fundamental nature, is relevant to many branches of pure mathematics, including number theory, geometry, group theory and ring theory. Professor Northcott's aim is to introduce homological ideas and methods and to show some of the results which can be achieve...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1960
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Homological algebra, because of its fundamental nature, is relevant to many branches of pure mathematics, including number theory, geometry, group theory and ring theory. Professor Northcott's aim is to introduce homological ideas and methods and to show some of the results which can be achieved. The early chapters provide the results needed to establish the theory of derived functors and to introduce torsion and extension functors. The new concepts are then applied to the theory of global dimensions, in an elucidation of the structure of commutative Noetherian rings of finite global dimension and in an account of the homology and cohomology theories of monoids and groups. A final section is devoted to comments on the various chapters, supplementary notes and suggestions for further reading. This book is designed with the needs and problems of the beginner in mind, providing a helpful and lucid account for those about to begin research, but will also be a useful work of reference for specialists. It can also be used as a textbook for an advanced course |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 282 pages) |
ISBN: | 9780511565915 |
DOI: | 10.1017/CBO9780511565915 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945883 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1960 |||| o||u| ||||||eng d | ||
020 | |a 9780511565915 |c Online |9 978-0-511-56591-5 | ||
024 | 7 | |a 10.1017/CBO9780511565915 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511565915 | ||
035 | |a (OCoLC)992846923 | ||
035 | |a (DE-599)BVBBV043945883 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512.55 |2 20 | |
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
100 | 1 | |a Northcott, D. G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a An introduction to homological algebra |c by D.G. Northcott |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1960 | |
300 | |a 1 online resource (xi, 282 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Homological algebra, because of its fundamental nature, is relevant to many branches of pure mathematics, including number theory, geometry, group theory and ring theory. Professor Northcott's aim is to introduce homological ideas and methods and to show some of the results which can be achieved. The early chapters provide the results needed to establish the theory of derived functors and to introduce torsion and extension functors. The new concepts are then applied to the theory of global dimensions, in an elucidation of the structure of commutative Noetherian rings of finite global dimension and in an account of the homology and cohomology theories of monoids and groups. A final section is devoted to comments on the various chapters, supplementary notes and suggestions for further reading. This book is designed with the needs and problems of the beginner in mind, providing a helpful and lucid account for those about to begin research, but will also be a useful work of reference for specialists. It can also be used as a textbook for an advanced course | ||
650 | 4 | |a Algebra, Homological | |
650 | 0 | 7 | |a Homologische Algebra |0 (DE-588)4160598-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Homologische Algebra |0 (DE-588)4160598-6 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-05841-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-09793-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511565915 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029354854 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511565915 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511565915 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176892520038400 |
---|---|
any_adam_object | |
author | Northcott, D. G. |
author_facet | Northcott, D. G. |
author_role | aut |
author_sort | Northcott, D. G. |
author_variant | d g n dg dgn |
building | Verbundindex |
bvnumber | BV043945883 |
classification_rvk | SK 320 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511565915 (OCoLC)992846923 (DE-599)BVBBV043945883 |
dewey-full | 512.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 |
dewey-search | 512.55 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511565915 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03016nmm a2200481zc 4500</leader><controlfield tag="001">BV043945883</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1960 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511565915</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56591-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511565915</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511565915</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992846923</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945883</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Northcott, D. G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to homological algebra</subfield><subfield code="c">by D.G. Northcott</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1960</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 282 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Homological algebra, because of its fundamental nature, is relevant to many branches of pure mathematics, including number theory, geometry, group theory and ring theory. Professor Northcott's aim is to introduce homological ideas and methods and to show some of the results which can be achieved. The early chapters provide the results needed to establish the theory of derived functors and to introduce torsion and extension functors. The new concepts are then applied to the theory of global dimensions, in an elucidation of the structure of commutative Noetherian rings of finite global dimension and in an account of the homology and cohomology theories of monoids and groups. A final section is devoted to comments on the various chapters, supplementary notes and suggestions for further reading. This book is designed with the needs and problems of the beginner in mind, providing a helpful and lucid account for those about to begin research, but will also be a useful work of reference for specialists. It can also be used as a textbook for an advanced course</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra, Homological</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homologische Algebra</subfield><subfield code="0">(DE-588)4160598-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homologische Algebra</subfield><subfield code="0">(DE-588)4160598-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-05841-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-09793-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511565915</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354854</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511565915</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511565915</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV043945883 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:24Z |
institution | BVB |
isbn | 9780511565915 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354854 |
oclc_num | 992846923 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xi, 282 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1960 |
publishDateSearch | 1960 |
publishDateSort | 1960 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Northcott, D. G. Verfasser aut An introduction to homological algebra by D.G. Northcott Cambridge Cambridge University Press 1960 1 online resource (xi, 282 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Homological algebra, because of its fundamental nature, is relevant to many branches of pure mathematics, including number theory, geometry, group theory and ring theory. Professor Northcott's aim is to introduce homological ideas and methods and to show some of the results which can be achieved. The early chapters provide the results needed to establish the theory of derived functors and to introduce torsion and extension functors. The new concepts are then applied to the theory of global dimensions, in an elucidation of the structure of commutative Noetherian rings of finite global dimension and in an account of the homology and cohomology theories of monoids and groups. A final section is devoted to comments on the various chapters, supplementary notes and suggestions for further reading. This book is designed with the needs and problems of the beginner in mind, providing a helpful and lucid account for those about to begin research, but will also be a useful work of reference for specialists. It can also be used as a textbook for an advanced course Algebra, Homological Homologische Algebra (DE-588)4160598-6 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Homologische Algebra (DE-588)4160598-6 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-05841-4 Erscheint auch als Druckausgabe 978-0-521-09793-2 https://doi.org/10.1017/CBO9780511565915 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Northcott, D. G. An introduction to homological algebra Algebra, Homological Homologische Algebra (DE-588)4160598-6 gnd |
subject_GND | (DE-588)4160598-6 (DE-588)4151278-9 |
title | An introduction to homological algebra |
title_auth | An introduction to homological algebra |
title_exact_search | An introduction to homological algebra |
title_full | An introduction to homological algebra by D.G. Northcott |
title_fullStr | An introduction to homological algebra by D.G. Northcott |
title_full_unstemmed | An introduction to homological algebra by D.G. Northcott |
title_short | An introduction to homological algebra |
title_sort | an introduction to homological algebra |
topic | Algebra, Homological Homologische Algebra (DE-588)4160598-6 gnd |
topic_facet | Algebra, Homological Homologische Algebra Einführung |
url | https://doi.org/10.1017/CBO9780511565915 |
work_keys_str_mv | AT northcottdg anintroductiontohomologicalalgebra |