Modelling perception with artificial neural networks:
Studies of the evolution of animal signals and sensory behaviour have more recently shifted from considering 'extrinsic' (environmental) determinants to 'intrinsic' (physiological) ones. The drive behind this change has been the increasing availability of neural network models. W...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2010
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Studies of the evolution of animal signals and sensory behaviour have more recently shifted from considering 'extrinsic' (environmental) determinants to 'intrinsic' (physiological) ones. The drive behind this change has been the increasing availability of neural network models. With contributions from experts in the field, this book provides a complete survey of artificial neural networks. The book opens with two broad, introductory level reviews on the themes of the book: neural networks as tools to explore the nature of perceptual mechanisms, and neural networks as models of perception in ecology and evolutionary biology. Later chapters expand on these themes and address important methodological issues when applying artificial neural networks to study perception. The final chapter provides perspective by introducing a neural processing system in a real animal. The book provides the foundations for implementing artificial neural networks, for those new to the field, along with identifying potential research areas for specialists |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (x, 397 pages) |
ISBN: | 9780511779145 |
DOI: | 10.1017/CBO9780511779145 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043944866 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2010 |||| o||u| ||||||eng d | ||
020 | |a 9780511779145 |c Online |9 978-0-511-77914-5 | ||
024 | 7 | |a 10.1017/CBO9780511779145 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511779145 | ||
035 | |a (OCoLC)967687532 | ||
035 | |a (DE-599)BVBBV043944866 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 612.8/2 |2 22 | |
084 | |a WW 1620 |0 (DE-625)152059:13423 |2 rvk | ||
245 | 1 | 0 | |a Modelling perception with artificial neural networks |c [edited by] Colin R. Tosh, Graeme D. Ruxton |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2010 | |
300 | |a 1 online resource (x, 397 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |g Part I. General themes |g 1 |g 2 |t Neural networks for perceptual processing: from simulation tools to theories |t Sensory ecology and perceptual allocation: new prospects for neural networks |r Kevin Gurney |r Steven M. Phelps |g Part II. |g 3 |g 4 |g 5 |g 6 |g 7 |t The use of artificial neural networks to elucidate the nature of perceptual processes in animals |t Correlation versus gradient type motion detectors: the pros and cons |t Spatial constancy and the brain: insights from neural networks |t The interplay of Pavlovian and instrumental processes in devaluation experiments: a computational embodied neuroscience model tested with a simulated rat |t Evolution, (sequential) learning and generalization in modular and nonmodular visual neural networks |t Effects of network structure on associative memory |r Alexander Borst |r Robert L. White III and Lawrence H. Snyder |r Francesco Mannella, Marco Mirolli and Gianluca Baldassarre |r Raffae.e Calabretta |t Neural networks and neuro-oncology: the complex interplay between brain tumour, epilepsy and cognition |t Artificial neural networks as models of perceptual processing in ecology and evolutionary biology |t Evolutionary diversification of mating behaviour: using artificial neural networks to study reproductive character displacement and speciation |t Applying artificial neural networks to the study of prey coloration |t Artificial neural networks in models of specialization, guild evolution and sympatric speciation |t Probabilistic design principles for robust multimodal communication networks |t Movement-based signalling and the physical world: modelling the changing perceptual task for receivers |r Hiraku Oshima and Tokashi Odagaki |r L. Douw [and others] -- |r Karin S. Pfennig and Michael J. Ryan |r Sami Merilaita |r Noél M.A. Holmgren, Niclas. Norrstrom and Wayne M. Getz |r David C. Krakauer, Jessica Flack and Nihat Ay |9 |g 8 |g Part III. |g 9 |g 10 |g 11 |g 12 |g 13 |
505 | 8 | 0 | |t Methodological issues in the use of simple feedforward networks |t How training and testing histories affect generalization: a test of simple neural networks |t The need for stochastic replication of ecological neural networks |t Methodological issues in modelling ecological learning with neural networks |t Neural network evolution and artificial life research |t Current velocity shapes the functional connectivity of benthiscapes to stream insect movement |t A model biological neural network: the cephalopod vestibular system |r Richard A. Peters -- |r Stefano Ghirlanda and Magnus Enquist |r Colin R. Tosh and Graeme D. Ruxton |r Daniel W. Franks and Graeme D. Ruxton |r Dara Curran and Colin O'Riordan |r Julian D. Olden |r Roddy Williamson and Abdul Chrachri |9 |g Part IV. |g 14 |g 15 |g 16 |g 17 |g 18 |g 19 |
520 | |a Studies of the evolution of animal signals and sensory behaviour have more recently shifted from considering 'extrinsic' (environmental) determinants to 'intrinsic' (physiological) ones. The drive behind this change has been the increasing availability of neural network models. With contributions from experts in the field, this book provides a complete survey of artificial neural networks. The book opens with two broad, introductory level reviews on the themes of the book: neural networks as tools to explore the nature of perceptual mechanisms, and neural networks as models of perception in ecology and evolutionary biology. Later chapters expand on these themes and address important methodological issues when applying artificial neural networks to study perception. The final chapter provides perspective by introducing a neural processing system in a real animal. The book provides the foundations for implementing artificial neural networks, for those new to the field, along with identifying potential research areas for specialists | ||
650 | 4 | |a Perception / Computer simulation | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 0 | 7 | |a Computersimulation |0 (DE-588)4148259-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrnehmung |0 (DE-588)4064317-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahrnehmung |0 (DE-588)4064317-7 |D s |
689 | 0 | 1 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 2 | |a Computersimulation |0 (DE-588)4148259-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Tosh, Colin |4 edt | |
700 | 1 | |a Ruxton, Graeme D. |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-76395-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511779145 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029353837 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511779145 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511779145 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176890278182912 |
---|---|
any_adam_object | |
author2 | Tosh, Colin Ruxton, Graeme D. |
author2_role | edt edt |
author2_variant | c t ct g d r gd gdr |
author_additional | Kevin Gurney Steven M. Phelps Alexander Borst Robert L. White III and Lawrence H. Snyder Francesco Mannella, Marco Mirolli and Gianluca Baldassarre Raffae.e Calabretta Hiraku Oshima and Tokashi Odagaki L. Douw [and others] -- Karin S. Pfennig and Michael J. Ryan Sami Merilaita Noél M.A. Holmgren, Niclas. Norrstrom and Wayne M. Getz David C. Krakauer, Jessica Flack and Nihat Ay Richard A. Peters -- Stefano Ghirlanda and Magnus Enquist Colin R. Tosh and Graeme D. Ruxton Daniel W. Franks and Graeme D. Ruxton Dara Curran and Colin O'Riordan Julian D. Olden Roddy Williamson and Abdul Chrachri |
author_facet | Tosh, Colin Ruxton, Graeme D. |
building | Verbundindex |
bvnumber | BV043944866 |
classification_rvk | WW 1620 |
collection | ZDB-20-CBO |
contents | Neural networks for perceptual processing: from simulation tools to theories Sensory ecology and perceptual allocation: new prospects for neural networks The use of artificial neural networks to elucidate the nature of perceptual processes in animals Correlation versus gradient type motion detectors: the pros and cons Spatial constancy and the brain: insights from neural networks The interplay of Pavlovian and instrumental processes in devaluation experiments: a computational embodied neuroscience model tested with a simulated rat Evolution, (sequential) learning and generalization in modular and nonmodular visual neural networks Effects of network structure on associative memory Neural networks and neuro-oncology: the complex interplay between brain tumour, epilepsy and cognition Artificial neural networks as models of perceptual processing in ecology and evolutionary biology Evolutionary diversification of mating behaviour: using artificial neural networks to study reproductive character displacement and speciation Applying artificial neural networks to the study of prey coloration Artificial neural networks in models of specialization, guild evolution and sympatric speciation Probabilistic design principles for robust multimodal communication networks Movement-based signalling and the physical world: modelling the changing perceptual task for receivers Methodological issues in the use of simple feedforward networks How training and testing histories affect generalization: a test of simple neural networks The need for stochastic replication of ecological neural networks Methodological issues in modelling ecological learning with neural networks Neural network evolution and artificial life research Current velocity shapes the functional connectivity of benthiscapes to stream insect movement A model biological neural network: the cephalopod vestibular system |
ctrlnum | (ZDB-20-CBO)CR9780511779145 (OCoLC)967687532 (DE-599)BVBBV043944866 |
dewey-full | 612.8/2 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 612 - Human physiology |
dewey-raw | 612.8/2 |
dewey-search | 612.8/2 |
dewey-sort | 3612.8 12 |
dewey-tens | 610 - Medicine and health |
discipline | Biologie Medizin |
doi_str_mv | 10.1017/CBO9780511779145 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05816nmm a2200541zc 4500</leader><controlfield tag="001">BV043944866</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511779145</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-77914-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511779145</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511779145</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967687532</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043944866</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">612.8/2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WW 1620</subfield><subfield code="0">(DE-625)152059:13423</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling perception with artificial neural networks</subfield><subfield code="c">[edited by] Colin R. Tosh, Graeme D. Ruxton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 397 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="g">Part I. General themes</subfield><subfield code="g">1</subfield><subfield code="g">2</subfield><subfield code="t">Neural networks for perceptual processing: from simulation tools to theories</subfield><subfield code="t">Sensory ecology and perceptual allocation: new prospects for neural networks</subfield><subfield code="r">Kevin Gurney</subfield><subfield code="r">Steven M. Phelps</subfield><subfield code="g">Part II.</subfield><subfield code="g">3</subfield><subfield code="g">4</subfield><subfield code="g">5</subfield><subfield code="g">6</subfield><subfield code="g">7</subfield><subfield code="t">The use of artificial neural networks to elucidate the nature of perceptual processes in animals</subfield><subfield code="t">Correlation versus gradient type motion detectors: the pros and cons</subfield><subfield code="t">Spatial constancy and the brain: insights from neural networks</subfield><subfield code="t">The interplay of Pavlovian and instrumental processes in devaluation experiments: a computational embodied neuroscience model tested with a simulated rat</subfield><subfield code="t">Evolution, (sequential) learning and generalization in modular and nonmodular visual neural networks</subfield><subfield code="t">Effects of network structure on associative memory</subfield><subfield code="r">Alexander Borst</subfield><subfield code="r">Robert L. White III and Lawrence H. Snyder</subfield><subfield code="r">Francesco Mannella, Marco Mirolli and Gianluca Baldassarre</subfield><subfield code="r">Raffae.e Calabretta</subfield><subfield code="t">Neural networks and neuro-oncology: the complex interplay between brain tumour, epilepsy and cognition</subfield><subfield code="t">Artificial neural networks as models of perceptual processing in ecology and evolutionary biology</subfield><subfield code="t">Evolutionary diversification of mating behaviour: using artificial neural networks to study reproductive character displacement and speciation</subfield><subfield code="t">Applying artificial neural networks to the study of prey coloration</subfield><subfield code="t">Artificial neural networks in models of specialization, guild evolution and sympatric speciation</subfield><subfield code="t">Probabilistic design principles for robust multimodal communication networks</subfield><subfield code="t">Movement-based signalling and the physical world: modelling the changing perceptual task for receivers</subfield><subfield code="r">Hiraku Oshima and Tokashi Odagaki</subfield><subfield code="r">L. Douw [and others] --</subfield><subfield code="r">Karin S. Pfennig and Michael J. Ryan</subfield><subfield code="r">Sami Merilaita</subfield><subfield code="r">Noél M.A. Holmgren, Niclas. Norrstrom and Wayne M. Getz</subfield><subfield code="r">David C. Krakauer, Jessica Flack and Nihat Ay</subfield><subfield code="9"> </subfield><subfield code="g">8</subfield><subfield code="g">Part III.</subfield><subfield code="g">9</subfield><subfield code="g">10</subfield><subfield code="g">11</subfield><subfield code="g">12</subfield><subfield code="g">13</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Methodological issues in the use of simple feedforward networks</subfield><subfield code="t">How training and testing histories affect generalization: a test of simple neural networks</subfield><subfield code="t">The need for stochastic replication of ecological neural networks</subfield><subfield code="t">Methodological issues in modelling ecological learning with neural networks</subfield><subfield code="t">Neural network evolution and artificial life research</subfield><subfield code="t">Current velocity shapes the functional connectivity of benthiscapes to stream insect movement</subfield><subfield code="t">A model biological neural network: the cephalopod vestibular system</subfield><subfield code="r">Richard A. Peters --</subfield><subfield code="r">Stefano Ghirlanda and Magnus Enquist</subfield><subfield code="r">Colin R. Tosh and Graeme D. Ruxton</subfield><subfield code="r">Daniel W. Franks and Graeme D. Ruxton</subfield><subfield code="r">Dara Curran and Colin O'Riordan</subfield><subfield code="r">Julian D. Olden</subfield><subfield code="r">Roddy Williamson and Abdul Chrachri</subfield><subfield code="9"> </subfield><subfield code="g">Part IV.</subfield><subfield code="g">14</subfield><subfield code="g">15</subfield><subfield code="g">16</subfield><subfield code="g">17</subfield><subfield code="g">18</subfield><subfield code="g">19</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Studies of the evolution of animal signals and sensory behaviour have more recently shifted from considering 'extrinsic' (environmental) determinants to 'intrinsic' (physiological) ones. The drive behind this change has been the increasing availability of neural network models. With contributions from experts in the field, this book provides a complete survey of artificial neural networks. The book opens with two broad, introductory level reviews on the themes of the book: neural networks as tools to explore the nature of perceptual mechanisms, and neural networks as models of perception in ecology and evolutionary biology. Later chapters expand on these themes and address important methodological issues when applying artificial neural networks to study perception. The final chapter provides perspective by introducing a neural processing system in a real animal. The book provides the foundations for implementing artificial neural networks, for those new to the field, along with identifying potential research areas for specialists</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perception / Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrnehmung</subfield><subfield code="0">(DE-588)4064317-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrnehmung</subfield><subfield code="0">(DE-588)4064317-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tosh, Colin</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruxton, Graeme D.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-76395-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511779145</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029353837</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511779145</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511779145</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043944866 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:22Z |
institution | BVB |
isbn | 9780511779145 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029353837 |
oclc_num | 967687532 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (x, 397 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Modelling perception with artificial neural networks [edited by] Colin R. Tosh, Graeme D. Ruxton Cambridge Cambridge University Press 2010 1 online resource (x, 397 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Part I. General themes 1 2 Neural networks for perceptual processing: from simulation tools to theories Sensory ecology and perceptual allocation: new prospects for neural networks Kevin Gurney Steven M. Phelps Part II. 3 4 5 6 7 The use of artificial neural networks to elucidate the nature of perceptual processes in animals Correlation versus gradient type motion detectors: the pros and cons Spatial constancy and the brain: insights from neural networks The interplay of Pavlovian and instrumental processes in devaluation experiments: a computational embodied neuroscience model tested with a simulated rat Evolution, (sequential) learning and generalization in modular and nonmodular visual neural networks Effects of network structure on associative memory Alexander Borst Robert L. White III and Lawrence H. Snyder Francesco Mannella, Marco Mirolli and Gianluca Baldassarre Raffae.e Calabretta Neural networks and neuro-oncology: the complex interplay between brain tumour, epilepsy and cognition Artificial neural networks as models of perceptual processing in ecology and evolutionary biology Evolutionary diversification of mating behaviour: using artificial neural networks to study reproductive character displacement and speciation Applying artificial neural networks to the study of prey coloration Artificial neural networks in models of specialization, guild evolution and sympatric speciation Probabilistic design principles for robust multimodal communication networks Movement-based signalling and the physical world: modelling the changing perceptual task for receivers Hiraku Oshima and Tokashi Odagaki L. Douw [and others] -- Karin S. Pfennig and Michael J. Ryan Sami Merilaita Noél M.A. Holmgren, Niclas. Norrstrom and Wayne M. Getz David C. Krakauer, Jessica Flack and Nihat Ay 8 Part III. 9 10 11 12 13 Methodological issues in the use of simple feedforward networks How training and testing histories affect generalization: a test of simple neural networks The need for stochastic replication of ecological neural networks Methodological issues in modelling ecological learning with neural networks Neural network evolution and artificial life research Current velocity shapes the functional connectivity of benthiscapes to stream insect movement A model biological neural network: the cephalopod vestibular system Richard A. Peters -- Stefano Ghirlanda and Magnus Enquist Colin R. Tosh and Graeme D. Ruxton Daniel W. Franks and Graeme D. Ruxton Dara Curran and Colin O'Riordan Julian D. Olden Roddy Williamson and Abdul Chrachri Part IV. 14 15 16 17 18 19 Studies of the evolution of animal signals and sensory behaviour have more recently shifted from considering 'extrinsic' (environmental) determinants to 'intrinsic' (physiological) ones. The drive behind this change has been the increasing availability of neural network models. With contributions from experts in the field, this book provides a complete survey of artificial neural networks. The book opens with two broad, introductory level reviews on the themes of the book: neural networks as tools to explore the nature of perceptual mechanisms, and neural networks as models of perception in ecology and evolutionary biology. Later chapters expand on these themes and address important methodological issues when applying artificial neural networks to study perception. The final chapter provides perspective by introducing a neural processing system in a real animal. The book provides the foundations for implementing artificial neural networks, for those new to the field, along with identifying potential research areas for specialists Perception / Computer simulation Neural networks (Computer science) Computersimulation (DE-588)4148259-1 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Wahrnehmung (DE-588)4064317-7 gnd rswk-swf Wahrnehmung (DE-588)4064317-7 s Neuronales Netz (DE-588)4226127-2 s Computersimulation (DE-588)4148259-1 s 1\p DE-604 Tosh, Colin edt Ruxton, Graeme D. edt Erscheint auch als Druckausgabe 978-0-521-76395-0 https://doi.org/10.1017/CBO9780511779145 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Modelling perception with artificial neural networks Neural networks for perceptual processing: from simulation tools to theories Sensory ecology and perceptual allocation: new prospects for neural networks The use of artificial neural networks to elucidate the nature of perceptual processes in animals Correlation versus gradient type motion detectors: the pros and cons Spatial constancy and the brain: insights from neural networks The interplay of Pavlovian and instrumental processes in devaluation experiments: a computational embodied neuroscience model tested with a simulated rat Evolution, (sequential) learning and generalization in modular and nonmodular visual neural networks Effects of network structure on associative memory Neural networks and neuro-oncology: the complex interplay between brain tumour, epilepsy and cognition Artificial neural networks as models of perceptual processing in ecology and evolutionary biology Evolutionary diversification of mating behaviour: using artificial neural networks to study reproductive character displacement and speciation Applying artificial neural networks to the study of prey coloration Artificial neural networks in models of specialization, guild evolution and sympatric speciation Probabilistic design principles for robust multimodal communication networks Movement-based signalling and the physical world: modelling the changing perceptual task for receivers Methodological issues in the use of simple feedforward networks How training and testing histories affect generalization: a test of simple neural networks The need for stochastic replication of ecological neural networks Methodological issues in modelling ecological learning with neural networks Neural network evolution and artificial life research Current velocity shapes the functional connectivity of benthiscapes to stream insect movement A model biological neural network: the cephalopod vestibular system Perception / Computer simulation Neural networks (Computer science) Computersimulation (DE-588)4148259-1 gnd Neuronales Netz (DE-588)4226127-2 gnd Wahrnehmung (DE-588)4064317-7 gnd |
subject_GND | (DE-588)4148259-1 (DE-588)4226127-2 (DE-588)4064317-7 |
title | Modelling perception with artificial neural networks |
title_alt | Neural networks for perceptual processing: from simulation tools to theories Sensory ecology and perceptual allocation: new prospects for neural networks The use of artificial neural networks to elucidate the nature of perceptual processes in animals Correlation versus gradient type motion detectors: the pros and cons Spatial constancy and the brain: insights from neural networks The interplay of Pavlovian and instrumental processes in devaluation experiments: a computational embodied neuroscience model tested with a simulated rat Evolution, (sequential) learning and generalization in modular and nonmodular visual neural networks Effects of network structure on associative memory Neural networks and neuro-oncology: the complex interplay between brain tumour, epilepsy and cognition Artificial neural networks as models of perceptual processing in ecology and evolutionary biology Evolutionary diversification of mating behaviour: using artificial neural networks to study reproductive character displacement and speciation Applying artificial neural networks to the study of prey coloration Artificial neural networks in models of specialization, guild evolution and sympatric speciation Probabilistic design principles for robust multimodal communication networks Movement-based signalling and the physical world: modelling the changing perceptual task for receivers Methodological issues in the use of simple feedforward networks How training and testing histories affect generalization: a test of simple neural networks The need for stochastic replication of ecological neural networks Methodological issues in modelling ecological learning with neural networks Neural network evolution and artificial life research Current velocity shapes the functional connectivity of benthiscapes to stream insect movement A model biological neural network: the cephalopod vestibular system |
title_auth | Modelling perception with artificial neural networks |
title_exact_search | Modelling perception with artificial neural networks |
title_full | Modelling perception with artificial neural networks [edited by] Colin R. Tosh, Graeme D. Ruxton |
title_fullStr | Modelling perception with artificial neural networks [edited by] Colin R. Tosh, Graeme D. Ruxton |
title_full_unstemmed | Modelling perception with artificial neural networks [edited by] Colin R. Tosh, Graeme D. Ruxton |
title_short | Modelling perception with artificial neural networks |
title_sort | modelling perception with artificial neural networks |
topic | Perception / Computer simulation Neural networks (Computer science) Computersimulation (DE-588)4148259-1 gnd Neuronales Netz (DE-588)4226127-2 gnd Wahrnehmung (DE-588)4064317-7 gnd |
topic_facet | Perception / Computer simulation Neural networks (Computer science) Computersimulation Neuronales Netz Wahrnehmung |
url | https://doi.org/10.1017/CBO9780511779145 |
work_keys_str_mv | AT toshcolin modellingperceptionwithartificialneuralnetworks AT ruxtongraemed modellingperceptionwithartificialneuralnetworks |