Motion deblurring: algorithms and systems
A comprehensive guide to restoring images degraded by motion blur, bridging the traditional approaches and emerging computational photography-based techniques, and bringing together a wide range of methods emerging from basic theory as well as cutting-edge research. It encompasses both algorithms an...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2014
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | A comprehensive guide to restoring images degraded by motion blur, bridging the traditional approaches and emerging computational photography-based techniques, and bringing together a wide range of methods emerging from basic theory as well as cutting-edge research. It encompasses both algorithms and architectures, providing detailed coverage of practical techniques by leading researchers. From an algorithms perspective, blind and non-blind approaches are discussed, including the use of single or multiple images; projective motion blur model; image priors and parametric models; high dynamic range imaging in the irradiance domain; and image recognition in blur. Performance limits for motion deblurring cameras are also presented. From a systems perspective, hybrid frameworks combining low-resolution-high-speed and high-resolution-low-speed cameras are described, along with the use of inertial sensors and coded exposure cameras. Also covered is an architecture exploiting compressive sensing for video recovery. A valuable resource for researchers and practitioners in computer vision, image processing, and related fields |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiv, 293 pages) |
ISBN: | 9781107360181 |
DOI: | 10.1017/CBO9781107360181 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043944666 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781107360181 |c Online |9 978-1-107-36018-1 | ||
024 | 7 | |a 10.1017/CBO9781107360181 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107360181 | ||
035 | |a (OCoLC)992881698 | ||
035 | |a (DE-599)BVBBV043944666 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 006.6 |2 23 | |
245 | 1 | 0 | |a Motion deblurring |b algorithms and systems |c edited by A.N. Rajagopalan, Indian Institute of Technology, Madras, Rama Chellappa, University of Maryland, College Park |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2014 | |
300 | |a 1 online resource (xiv, 293 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Machine generated contents note: 1. Mathematical models and practical solvers for uniform motion deblurring / Jiaya Jia -- 1.1. Non-blind deconvolution -- 1.2. Blind deconvolution -- 2. Spatially-varying image deblurring / Richard Szeliski -- 2.1. Review of image deblurring methods -- 2.2.A unified camera-shake blur model -- 2.3. Single image deblurring using motion density functions -- 2.4. Image deblurring using inertial measurement sensors -- 2.5. Generating sharp panoramas from motion-blurred videos -- 2.6. Discussion -- 3. Hybrid-imaging for motion deblurring / Shree K. Nayar -- 3.1. Introduction -- 3.2. Fundamental resolution tradeoff -- 3.3. Hybrid-imaging systems -- 3.4. Shift-invariant PSF image deblurring -- 3.5. Spatially-varying PSF image deblurring -- 3.6. Moving object deblurring -- 3.7. Discussion and summary -- 4. Efficient, blind, spatially-variant deblurring for shaken images / Jean Ponce -- 4.1. Introduction -- 4.2. Modelling spatially-variant camera-shake blur | |
505 | 8 | |a Contents note continued: 13.8. Summary and discussion | |
505 | 8 | |a Contents note continued: 11. Coded exposure motion deblurring for recognition / Scott McCloskey -- 11.1. Motion sensitivity of iris recognition -- 11.2. Coded exposure -- 11.3. Coded exposure performance on iris recognition -- 11.4. Barcodes -- 11.5. More general subject motion -- 11.6. Implications of computational imaging for recognition -- 11.7. Conclusion -- 12. Direct recognition of motion-blurred faces / Rama Chellappa -- 12.1. Introduction -- 12.2. The set of all motion-blurred images -- 12.3. Bank of classifiers approach for recognizing motion-blurred faces -- 12.4. Experimental evaluation -- 12.5. Discussion -- 13. Performance limits for motion deblurring cameras / Mohit Gupta -- 13.1. Introduction -- 13.2. Performance bounds for flutter shutter cameras -- 13.3. Performance bound for motion-invariant cameras -- 13.4. Simulations to verify performance bounds -- 13.5. Role of image priors -- 13.6. When to use computational imaging -- 13.7. Relationship to other computational imaging systems | |
505 | 8 | |a Contents note continued: 7.7. Optimized codes for PSF estimation -- 7.8. Implementation -- 7.9. Analysis -- 7.10. Summary -- 8. Richardson-Lucy deblurring for scenes under a projective motion path / Michael S. Brown -- 8.1. Introduction -- 8.2. Related work -- 8.3. The projective motion blur model -- 8.4. Projective motion Richardson--Lucy -- 8.5. Motion estimation -- 8.6. Experiment results -- 8.7. Discussion and conclusion -- 9. HDR imaging in the presence of motion blur / A.N. Rajagopalan -- 9.1. Introduction -- 9.2. Existing approaches to HDRJ -- 9.3. CRF, irradiance estimation, and tone-mapping -- 9.4. HDR imaging under uniform blurring -- 9.5. HDRI for non-uniform blurring -- 9.6. Experimental results -- 9.7. Conclusions and discussions -- 10.Compressive video sensing to tackle motion blur / Dikpal Reddy -- 10.1. Introduction -- 10.2. Related work -- 10.3. Imaging architecture -- 10.4. High-speed video recovery -- 10.5. Experimental results -- 10.6. Conclusions | |
505 | 8 | |a Contents note continued: 4.3. The computational model -- 4.4. Blind estimation of blur from a single image -- 4.5. Efficient computation of the spatially-variant model -- 4.6. Single-image deblurring results -- 4.7. Implementation -- 4.8. Conclusion -- 5. Removing camera shake in smartphones without hardware stabilization / Jan Flusser -- 5.1. Introduction -- 5.2. Image acquisition model -- 5.3. Inverse problem -- 5.4. Pinhole camera model -- 5.5. Smartphone application -- 5.6. Evaluation -- 5.7. Conclusions -- 6. Multi-sensor fusion for motion deblurring / Jlngyi Yu -- 6.1. Introduction -- 6.2. Hybrid-speed sensor -- 6.3. Motion deblurring -- 6.4. Depth map super-resolution -- 6.5. Extensions to low-light imaging -- 6.6. Discussion and summary -- 7. Motion deblurring using fluttered shutter / Amit Agrawal -- 7.1. Related work -- 7.2. Coded exposure photography -- 7.3. Image deconvolution -- 7.4. Code selection -- 7.5. Linear solution for deblurring -- 7.6. Resolution enhancement | |
520 | |a A comprehensive guide to restoring images degraded by motion blur, bridging the traditional approaches and emerging computational photography-based techniques, and bringing together a wide range of methods emerging from basic theory as well as cutting-edge research. It encompasses both algorithms and architectures, providing detailed coverage of practical techniques by leading researchers. From an algorithms perspective, blind and non-blind approaches are discussed, including the use of single or multiple images; projective motion blur model; image priors and parametric models; high dynamic range imaging in the irradiance domain; and image recognition in blur. Performance limits for motion deblurring cameras are also presented. From a systems perspective, hybrid frameworks combining low-resolution-high-speed and high-resolution-low-speed cameras are described, along with the use of inertial sensors and coded exposure cameras. Also covered is an architecture exploiting compressive sensing for video recovery. A valuable resource for researchers and practitioners in computer vision, image processing, and related fields | ||
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Image processing / Mathematics | |
650 | 4 | |a Image processing / Digital techniques | |
650 | 4 | |a Digital video / Editing / Mathematics | |
650 | 4 | |a Photography / Retouching / Data processing | |
650 | 4 | |a Motion / Mathematical models | |
700 | 1 | |a Rajagopalan, A. N. |4 edt | |
700 | 1 | |a Chellappa, Rama |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-04436-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-62149-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781107360181 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029353637 | ||
966 | e | |u https://doi.org/10.1017/CBO9781107360181 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107360181 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176889814712320 |
---|---|
any_adam_object | |
author2 | Rajagopalan, A. N. Chellappa, Rama |
author2_role | edt edt |
author2_variant | a n r an anr r c rc |
author_facet | Rajagopalan, A. N. Chellappa, Rama |
building | Verbundindex |
bvnumber | BV043944666 |
collection | ZDB-20-CBO |
contents | Machine generated contents note: 1. Mathematical models and practical solvers for uniform motion deblurring / Jiaya Jia -- 1.1. Non-blind deconvolution -- 1.2. Blind deconvolution -- 2. Spatially-varying image deblurring / Richard Szeliski -- 2.1. Review of image deblurring methods -- 2.2.A unified camera-shake blur model -- 2.3. Single image deblurring using motion density functions -- 2.4. Image deblurring using inertial measurement sensors -- 2.5. Generating sharp panoramas from motion-blurred videos -- 2.6. Discussion -- 3. Hybrid-imaging for motion deblurring / Shree K. Nayar -- 3.1. Introduction -- 3.2. Fundamental resolution tradeoff -- 3.3. Hybrid-imaging systems -- 3.4. Shift-invariant PSF image deblurring -- 3.5. Spatially-varying PSF image deblurring -- 3.6. Moving object deblurring -- 3.7. Discussion and summary -- 4. Efficient, blind, spatially-variant deblurring for shaken images / Jean Ponce -- 4.1. Introduction -- 4.2. Modelling spatially-variant camera-shake blur Contents note continued: 13.8. Summary and discussion Contents note continued: 11. Coded exposure motion deblurring for recognition / Scott McCloskey -- 11.1. Motion sensitivity of iris recognition -- 11.2. Coded exposure -- 11.3. Coded exposure performance on iris recognition -- 11.4. Barcodes -- 11.5. More general subject motion -- 11.6. Implications of computational imaging for recognition -- 11.7. Conclusion -- 12. Direct recognition of motion-blurred faces / Rama Chellappa -- 12.1. Introduction -- 12.2. The set of all motion-blurred images -- 12.3. Bank of classifiers approach for recognizing motion-blurred faces -- 12.4. Experimental evaluation -- 12.5. Discussion -- 13. Performance limits for motion deblurring cameras / Mohit Gupta -- 13.1. Introduction -- 13.2. Performance bounds for flutter shutter cameras -- 13.3. Performance bound for motion-invariant cameras -- 13.4. Simulations to verify performance bounds -- 13.5. Role of image priors -- 13.6. When to use computational imaging -- 13.7. Relationship to other computational imaging systems Contents note continued: 7.7. Optimized codes for PSF estimation -- 7.8. Implementation -- 7.9. Analysis -- 7.10. Summary -- 8. Richardson-Lucy deblurring for scenes under a projective motion path / Michael S. Brown -- 8.1. Introduction -- 8.2. Related work -- 8.3. The projective motion blur model -- 8.4. Projective motion Richardson--Lucy -- 8.5. Motion estimation -- 8.6. Experiment results -- 8.7. Discussion and conclusion -- 9. HDR imaging in the presence of motion blur / A.N. Rajagopalan -- 9.1. Introduction -- 9.2. Existing approaches to HDRJ -- 9.3. CRF, irradiance estimation, and tone-mapping -- 9.4. HDR imaging under uniform blurring -- 9.5. HDRI for non-uniform blurring -- 9.6. Experimental results -- 9.7. Conclusions and discussions -- 10.Compressive video sensing to tackle motion blur / Dikpal Reddy -- 10.1. Introduction -- 10.2. Related work -- 10.3. Imaging architecture -- 10.4. High-speed video recovery -- 10.5. Experimental results -- 10.6. Conclusions Contents note continued: 4.3. The computational model -- 4.4. Blind estimation of blur from a single image -- 4.5. Efficient computation of the spatially-variant model -- 4.6. Single-image deblurring results -- 4.7. Implementation -- 4.8. Conclusion -- 5. Removing camera shake in smartphones without hardware stabilization / Jan Flusser -- 5.1. Introduction -- 5.2. Image acquisition model -- 5.3. Inverse problem -- 5.4. Pinhole camera model -- 5.5. Smartphone application -- 5.6. Evaluation -- 5.7. Conclusions -- 6. Multi-sensor fusion for motion deblurring / Jlngyi Yu -- 6.1. Introduction -- 6.2. Hybrid-speed sensor -- 6.3. Motion deblurring -- 6.4. Depth map super-resolution -- 6.5. Extensions to low-light imaging -- 6.6. Discussion and summary -- 7. Motion deblurring using fluttered shutter / Amit Agrawal -- 7.1. Related work -- 7.2. Coded exposure photography -- 7.3. Image deconvolution -- 7.4. Code selection -- 7.5. Linear solution for deblurring -- 7.6. Resolution enhancement |
ctrlnum | (ZDB-20-CBO)CR9781107360181 (OCoLC)992881698 (DE-599)BVBBV043944666 |
dewey-full | 006.6 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.6 |
dewey-search | 006.6 |
dewey-sort | 16.6 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1017/CBO9781107360181 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07211nmm a2200553zc 4500</leader><controlfield tag="001">BV043944666</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107360181</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-107-36018-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781107360181</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107360181</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992881698</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043944666</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Motion deblurring</subfield><subfield code="b">algorithms and systems</subfield><subfield code="c">edited by A.N. Rajagopalan, Indian Institute of Technology, Madras, Rama Chellappa, University of Maryland, College Park</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 293 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Machine generated contents note: 1. Mathematical models and practical solvers for uniform motion deblurring / Jiaya Jia -- 1.1. Non-blind deconvolution -- 1.2. Blind deconvolution -- 2. Spatially-varying image deblurring / Richard Szeliski -- 2.1. Review of image deblurring methods -- 2.2.A unified camera-shake blur model -- 2.3. Single image deblurring using motion density functions -- 2.4. Image deblurring using inertial measurement sensors -- 2.5. Generating sharp panoramas from motion-blurred videos -- 2.6. Discussion -- 3. Hybrid-imaging for motion deblurring / Shree K. Nayar -- 3.1. Introduction -- 3.2. Fundamental resolution tradeoff -- 3.3. Hybrid-imaging systems -- 3.4. Shift-invariant PSF image deblurring -- 3.5. Spatially-varying PSF image deblurring -- 3.6. Moving object deblurring -- 3.7. Discussion and summary -- 4. Efficient, blind, spatially-variant deblurring for shaken images / Jean Ponce -- 4.1. Introduction -- 4.2. Modelling spatially-variant camera-shake blur</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Contents note continued: 13.8. Summary and discussion</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Contents note continued: 11. Coded exposure motion deblurring for recognition / Scott McCloskey -- 11.1. Motion sensitivity of iris recognition -- 11.2. Coded exposure -- 11.3. Coded exposure performance on iris recognition -- 11.4. Barcodes -- 11.5. More general subject motion -- 11.6. Implications of computational imaging for recognition -- 11.7. Conclusion -- 12. Direct recognition of motion-blurred faces / Rama Chellappa -- 12.1. Introduction -- 12.2. The set of all motion-blurred images -- 12.3. Bank of classifiers approach for recognizing motion-blurred faces -- 12.4. Experimental evaluation -- 12.5. Discussion -- 13. Performance limits for motion deblurring cameras / Mohit Gupta -- 13.1. Introduction -- 13.2. Performance bounds for flutter shutter cameras -- 13.3. Performance bound for motion-invariant cameras -- 13.4. Simulations to verify performance bounds -- 13.5. Role of image priors -- 13.6. When to use computational imaging -- 13.7. Relationship to other computational imaging systems</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Contents note continued: 7.7. Optimized codes for PSF estimation -- 7.8. Implementation -- 7.9. Analysis -- 7.10. Summary -- 8. Richardson-Lucy deblurring for scenes under a projective motion path / Michael S. Brown -- 8.1. Introduction -- 8.2. Related work -- 8.3. The projective motion blur model -- 8.4. Projective motion Richardson--Lucy -- 8.5. Motion estimation -- 8.6. Experiment results -- 8.7. Discussion and conclusion -- 9. HDR imaging in the presence of motion blur / A.N. Rajagopalan -- 9.1. Introduction -- 9.2. Existing approaches to HDRJ -- 9.3. CRF, irradiance estimation, and tone-mapping -- 9.4. HDR imaging under uniform blurring -- 9.5. HDRI for non-uniform blurring -- 9.6. Experimental results -- 9.7. Conclusions and discussions -- 10.Compressive video sensing to tackle motion blur / Dikpal Reddy -- 10.1. Introduction -- 10.2. Related work -- 10.3. Imaging architecture -- 10.4. High-speed video recovery -- 10.5. Experimental results -- 10.6. Conclusions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Contents note continued: 4.3. The computational model -- 4.4. Blind estimation of blur from a single image -- 4.5. Efficient computation of the spatially-variant model -- 4.6. Single-image deblurring results -- 4.7. Implementation -- 4.8. Conclusion -- 5. Removing camera shake in smartphones without hardware stabilization / Jan Flusser -- 5.1. Introduction -- 5.2. Image acquisition model -- 5.3. Inverse problem -- 5.4. Pinhole camera model -- 5.5. Smartphone application -- 5.6. Evaluation -- 5.7. Conclusions -- 6. Multi-sensor fusion for motion deblurring / Jlngyi Yu -- 6.1. Introduction -- 6.2. Hybrid-speed sensor -- 6.3. Motion deblurring -- 6.4. Depth map super-resolution -- 6.5. Extensions to low-light imaging -- 6.6. Discussion and summary -- 7. Motion deblurring using fluttered shutter / Amit Agrawal -- 7.1. Related work -- 7.2. Coded exposure photography -- 7.3. Image deconvolution -- 7.4. Code selection -- 7.5. Linear solution for deblurring -- 7.6. Resolution enhancement</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A comprehensive guide to restoring images degraded by motion blur, bridging the traditional approaches and emerging computational photography-based techniques, and bringing together a wide range of methods emerging from basic theory as well as cutting-edge research. It encompasses both algorithms and architectures, providing detailed coverage of practical techniques by leading researchers. From an algorithms perspective, blind and non-blind approaches are discussed, including the use of single or multiple images; projective motion blur model; image priors and parametric models; high dynamic range imaging in the irradiance domain; and image recognition in blur. Performance limits for motion deblurring cameras are also presented. From a systems perspective, hybrid frameworks combining low-resolution-high-speed and high-resolution-low-speed cameras are described, along with the use of inertial sensors and coded exposure cameras. Also covered is an architecture exploiting compressive sensing for video recovery. A valuable resource for researchers and practitioners in computer vision, image processing, and related fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image processing / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image processing / Digital techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital video / Editing / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photography / Retouching / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motion / Mathematical models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rajagopalan, A. N.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chellappa, Rama</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-04436-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-62149-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781107360181</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029353637</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107360181</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107360181</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043944666 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:22Z |
institution | BVB |
isbn | 9781107360181 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029353637 |
oclc_num | 992881698 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiv, 293 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Motion deblurring algorithms and systems edited by A.N. Rajagopalan, Indian Institute of Technology, Madras, Rama Chellappa, University of Maryland, College Park Cambridge Cambridge University Press 2014 1 online resource (xiv, 293 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Machine generated contents note: 1. Mathematical models and practical solvers for uniform motion deblurring / Jiaya Jia -- 1.1. Non-blind deconvolution -- 1.2. Blind deconvolution -- 2. Spatially-varying image deblurring / Richard Szeliski -- 2.1. Review of image deblurring methods -- 2.2.A unified camera-shake blur model -- 2.3. Single image deblurring using motion density functions -- 2.4. Image deblurring using inertial measurement sensors -- 2.5. Generating sharp panoramas from motion-blurred videos -- 2.6. Discussion -- 3. Hybrid-imaging for motion deblurring / Shree K. Nayar -- 3.1. Introduction -- 3.2. Fundamental resolution tradeoff -- 3.3. Hybrid-imaging systems -- 3.4. Shift-invariant PSF image deblurring -- 3.5. Spatially-varying PSF image deblurring -- 3.6. Moving object deblurring -- 3.7. Discussion and summary -- 4. Efficient, blind, spatially-variant deblurring for shaken images / Jean Ponce -- 4.1. Introduction -- 4.2. Modelling spatially-variant camera-shake blur Contents note continued: 13.8. Summary and discussion Contents note continued: 11. Coded exposure motion deblurring for recognition / Scott McCloskey -- 11.1. Motion sensitivity of iris recognition -- 11.2. Coded exposure -- 11.3. Coded exposure performance on iris recognition -- 11.4. Barcodes -- 11.5. More general subject motion -- 11.6. Implications of computational imaging for recognition -- 11.7. Conclusion -- 12. Direct recognition of motion-blurred faces / Rama Chellappa -- 12.1. Introduction -- 12.2. The set of all motion-blurred images -- 12.3. Bank of classifiers approach for recognizing motion-blurred faces -- 12.4. Experimental evaluation -- 12.5. Discussion -- 13. Performance limits for motion deblurring cameras / Mohit Gupta -- 13.1. Introduction -- 13.2. Performance bounds for flutter shutter cameras -- 13.3. Performance bound for motion-invariant cameras -- 13.4. Simulations to verify performance bounds -- 13.5. Role of image priors -- 13.6. When to use computational imaging -- 13.7. Relationship to other computational imaging systems Contents note continued: 7.7. Optimized codes for PSF estimation -- 7.8. Implementation -- 7.9. Analysis -- 7.10. Summary -- 8. Richardson-Lucy deblurring for scenes under a projective motion path / Michael S. Brown -- 8.1. Introduction -- 8.2. Related work -- 8.3. The projective motion blur model -- 8.4. Projective motion Richardson--Lucy -- 8.5. Motion estimation -- 8.6. Experiment results -- 8.7. Discussion and conclusion -- 9. HDR imaging in the presence of motion blur / A.N. Rajagopalan -- 9.1. Introduction -- 9.2. Existing approaches to HDRJ -- 9.3. CRF, irradiance estimation, and tone-mapping -- 9.4. HDR imaging under uniform blurring -- 9.5. HDRI for non-uniform blurring -- 9.6. Experimental results -- 9.7. Conclusions and discussions -- 10.Compressive video sensing to tackle motion blur / Dikpal Reddy -- 10.1. Introduction -- 10.2. Related work -- 10.3. Imaging architecture -- 10.4. High-speed video recovery -- 10.5. Experimental results -- 10.6. Conclusions Contents note continued: 4.3. The computational model -- 4.4. Blind estimation of blur from a single image -- 4.5. Efficient computation of the spatially-variant model -- 4.6. Single-image deblurring results -- 4.7. Implementation -- 4.8. Conclusion -- 5. Removing camera shake in smartphones without hardware stabilization / Jan Flusser -- 5.1. Introduction -- 5.2. Image acquisition model -- 5.3. Inverse problem -- 5.4. Pinhole camera model -- 5.5. Smartphone application -- 5.6. Evaluation -- 5.7. Conclusions -- 6. Multi-sensor fusion for motion deblurring / Jlngyi Yu -- 6.1. Introduction -- 6.2. Hybrid-speed sensor -- 6.3. Motion deblurring -- 6.4. Depth map super-resolution -- 6.5. Extensions to low-light imaging -- 6.6. Discussion and summary -- 7. Motion deblurring using fluttered shutter / Amit Agrawal -- 7.1. Related work -- 7.2. Coded exposure photography -- 7.3. Image deconvolution -- 7.4. Code selection -- 7.5. Linear solution for deblurring -- 7.6. Resolution enhancement A comprehensive guide to restoring images degraded by motion blur, bridging the traditional approaches and emerging computational photography-based techniques, and bringing together a wide range of methods emerging from basic theory as well as cutting-edge research. It encompasses both algorithms and architectures, providing detailed coverage of practical techniques by leading researchers. From an algorithms perspective, blind and non-blind approaches are discussed, including the use of single or multiple images; projective motion blur model; image priors and parametric models; high dynamic range imaging in the irradiance domain; and image recognition in blur. Performance limits for motion deblurring cameras are also presented. From a systems perspective, hybrid frameworks combining low-resolution-high-speed and high-resolution-low-speed cameras are described, along with the use of inertial sensors and coded exposure cameras. Also covered is an architecture exploiting compressive sensing for video recovery. A valuable resource for researchers and practitioners in computer vision, image processing, and related fields Datenverarbeitung Mathematik Mathematisches Modell Image processing / Mathematics Image processing / Digital techniques Digital video / Editing / Mathematics Photography / Retouching / Data processing Motion / Mathematical models Rajagopalan, A. N. edt Chellappa, Rama edt Erscheint auch als Druckausgabe 978-1-107-04436-4 Erscheint auch als Druckausgabe 978-1-107-62149-7 https://doi.org/10.1017/CBO9781107360181 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Motion deblurring algorithms and systems Machine generated contents note: 1. Mathematical models and practical solvers for uniform motion deblurring / Jiaya Jia -- 1.1. Non-blind deconvolution -- 1.2. Blind deconvolution -- 2. Spatially-varying image deblurring / Richard Szeliski -- 2.1. Review of image deblurring methods -- 2.2.A unified camera-shake blur model -- 2.3. Single image deblurring using motion density functions -- 2.4. Image deblurring using inertial measurement sensors -- 2.5. Generating sharp panoramas from motion-blurred videos -- 2.6. Discussion -- 3. Hybrid-imaging for motion deblurring / Shree K. Nayar -- 3.1. Introduction -- 3.2. Fundamental resolution tradeoff -- 3.3. Hybrid-imaging systems -- 3.4. Shift-invariant PSF image deblurring -- 3.5. Spatially-varying PSF image deblurring -- 3.6. Moving object deblurring -- 3.7. Discussion and summary -- 4. Efficient, blind, spatially-variant deblurring for shaken images / Jean Ponce -- 4.1. Introduction -- 4.2. Modelling spatially-variant camera-shake blur Contents note continued: 13.8. Summary and discussion Contents note continued: 11. Coded exposure motion deblurring for recognition / Scott McCloskey -- 11.1. Motion sensitivity of iris recognition -- 11.2. Coded exposure -- 11.3. Coded exposure performance on iris recognition -- 11.4. Barcodes -- 11.5. More general subject motion -- 11.6. Implications of computational imaging for recognition -- 11.7. Conclusion -- 12. Direct recognition of motion-blurred faces / Rama Chellappa -- 12.1. Introduction -- 12.2. The set of all motion-blurred images -- 12.3. Bank of classifiers approach for recognizing motion-blurred faces -- 12.4. Experimental evaluation -- 12.5. Discussion -- 13. Performance limits for motion deblurring cameras / Mohit Gupta -- 13.1. Introduction -- 13.2. Performance bounds for flutter shutter cameras -- 13.3. Performance bound for motion-invariant cameras -- 13.4. Simulations to verify performance bounds -- 13.5. Role of image priors -- 13.6. When to use computational imaging -- 13.7. Relationship to other computational imaging systems Contents note continued: 7.7. Optimized codes for PSF estimation -- 7.8. Implementation -- 7.9. Analysis -- 7.10. Summary -- 8. Richardson-Lucy deblurring for scenes under a projective motion path / Michael S. Brown -- 8.1. Introduction -- 8.2. Related work -- 8.3. The projective motion blur model -- 8.4. Projective motion Richardson--Lucy -- 8.5. Motion estimation -- 8.6. Experiment results -- 8.7. Discussion and conclusion -- 9. HDR imaging in the presence of motion blur / A.N. Rajagopalan -- 9.1. Introduction -- 9.2. Existing approaches to HDRJ -- 9.3. CRF, irradiance estimation, and tone-mapping -- 9.4. HDR imaging under uniform blurring -- 9.5. HDRI for non-uniform blurring -- 9.6. Experimental results -- 9.7. Conclusions and discussions -- 10.Compressive video sensing to tackle motion blur / Dikpal Reddy -- 10.1. Introduction -- 10.2. Related work -- 10.3. Imaging architecture -- 10.4. High-speed video recovery -- 10.5. Experimental results -- 10.6. Conclusions Contents note continued: 4.3. The computational model -- 4.4. Blind estimation of blur from a single image -- 4.5. Efficient computation of the spatially-variant model -- 4.6. Single-image deblurring results -- 4.7. Implementation -- 4.8. Conclusion -- 5. Removing camera shake in smartphones without hardware stabilization / Jan Flusser -- 5.1. Introduction -- 5.2. Image acquisition model -- 5.3. Inverse problem -- 5.4. Pinhole camera model -- 5.5. Smartphone application -- 5.6. Evaluation -- 5.7. Conclusions -- 6. Multi-sensor fusion for motion deblurring / Jlngyi Yu -- 6.1. Introduction -- 6.2. Hybrid-speed sensor -- 6.3. Motion deblurring -- 6.4. Depth map super-resolution -- 6.5. Extensions to low-light imaging -- 6.6. Discussion and summary -- 7. Motion deblurring using fluttered shutter / Amit Agrawal -- 7.1. Related work -- 7.2. Coded exposure photography -- 7.3. Image deconvolution -- 7.4. Code selection -- 7.5. Linear solution for deblurring -- 7.6. Resolution enhancement Datenverarbeitung Mathematik Mathematisches Modell Image processing / Mathematics Image processing / Digital techniques Digital video / Editing / Mathematics Photography / Retouching / Data processing Motion / Mathematical models |
title | Motion deblurring algorithms and systems |
title_auth | Motion deblurring algorithms and systems |
title_exact_search | Motion deblurring algorithms and systems |
title_full | Motion deblurring algorithms and systems edited by A.N. Rajagopalan, Indian Institute of Technology, Madras, Rama Chellappa, University of Maryland, College Park |
title_fullStr | Motion deblurring algorithms and systems edited by A.N. Rajagopalan, Indian Institute of Technology, Madras, Rama Chellappa, University of Maryland, College Park |
title_full_unstemmed | Motion deblurring algorithms and systems edited by A.N. Rajagopalan, Indian Institute of Technology, Madras, Rama Chellappa, University of Maryland, College Park |
title_short | Motion deblurring |
title_sort | motion deblurring algorithms and systems |
title_sub | algorithms and systems |
topic | Datenverarbeitung Mathematik Mathematisches Modell Image processing / Mathematics Image processing / Digital techniques Digital video / Editing / Mathematics Photography / Retouching / Data processing Motion / Mathematical models |
topic_facet | Datenverarbeitung Mathematik Mathematisches Modell Image processing / Mathematics Image processing / Digital techniques Digital video / Editing / Mathematics Photography / Retouching / Data processing Motion / Mathematical models |
url | https://doi.org/10.1017/CBO9781107360181 |
work_keys_str_mv | AT rajagopalanan motiondeblurringalgorithmsandsystems AT chellapparama motiondeblurringalgorithmsandsystems |