Integer partitions:
The theory of integer partitions is a subject of enduring interest. A major research area in its own right, it has found numerous applications, and celebrated results such as the Rogers-Ramanujan identities make it a topic filled with the true romance of mathematics. The aim in this introductory tex...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2012
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UER01 Volltext |
Zusammenfassung: | The theory of integer partitions is a subject of enduring interest. A major research area in its own right, it has found numerous applications, and celebrated results such as the Rogers-Ramanujan identities make it a topic filled with the true romance of mathematics. The aim in this introductory textbook is to provide an accessible and wide ranging introduction to partitions, without requiring anything more of the reader than some familiarity with polynomials and infinite series. Many exercises are included, together with some solutions and helpful hints. The book has a short introduction followed by an initial chapter introducing Euler's famous theorem on partitions with odd parts and partitions with distinct parts. This is followed by chapters titled: Ferrers Graphs, The Rogers-Ramanujan Identities, Generating Functions, Formulas for Partition Functions, Gaussian Polynomials, Durfee Squares, Euler Refined, Plane Partitions, Growing Ferrers Boards, and Musings |
Beschreibung: | 1 online resource (x, 141 pages) |
ISBN: | 9781139167239 |
DOI: | 10.1017/CBO9781139167239 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043943517 | ||
003 | DE-604 | ||
005 | 20190725 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2012 |||| o||u| ||||||eng d | ||
020 | |a 9781139167239 |c Online |9 978-1-139-16723-9 | ||
024 | 7 | |a 10.1017/CBO9781139167239 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139167239 | ||
035 | |a (OCoLC)992888668 | ||
035 | |a (DE-599)BVBBV043943517 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-29 |a DE-92 | ||
082 | 0 | |a 512.7/3 |2 22 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
100 | 1 | |a Andrews, George E. |d 1938- |e Verfasser |0 (DE-588)122581342 |4 aut | |
245 | 1 | 0 | |a Integer partitions |c George E. Andrews, Kimmo Eriksson |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2012 | |
300 | |a 1 online resource (x, 141 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a The theory of integer partitions is a subject of enduring interest. A major research area in its own right, it has found numerous applications, and celebrated results such as the Rogers-Ramanujan identities make it a topic filled with the true romance of mathematics. The aim in this introductory textbook is to provide an accessible and wide ranging introduction to partitions, without requiring anything more of the reader than some familiarity with polynomials and infinite series. Many exercises are included, together with some solutions and helpful hints. The book has a short introduction followed by an initial chapter introducing Euler's famous theorem on partitions with odd parts and partitions with distinct parts. This is followed by chapters titled: Ferrers Graphs, The Rogers-Ramanujan Identities, Generating Functions, Formulas for Partition Functions, Gaussian Polynomials, Durfee Squares, Euler Refined, Plane Partitions, Growing Ferrers Boards, and Musings | ||
650 | 4 | |a Partitions (Mathematics) | |
650 | 0 | 7 | |a Partition |g Zahlentheorie |0 (DE-588)4212684-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partition |g Zahlentheorie |0 (DE-588)4212684-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Eriksson, Kimmo |d 1967- |e Sonstige |0 (DE-588)139282203 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-521-84118-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-0-521-60090-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139167239 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029352488 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139167239 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139167239 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139167239 |l UER01 |p ZDB-20-CBO |q UER_PDA_CBO_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176887467999232 |
---|---|
any_adam_object | |
author | Andrews, George E. 1938- |
author_GND | (DE-588)122581342 (DE-588)139282203 |
author_facet | Andrews, George E. 1938- |
author_role | aut |
author_sort | Andrews, George E. 1938- |
author_variant | g e a ge gea |
building | Verbundindex |
bvnumber | BV043943517 |
classification_rvk | SK 180 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139167239 (OCoLC)992888668 (DE-599)BVBBV043943517 |
dewey-full | 512.7/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7/3 |
dewey-search | 512.7/3 |
dewey-sort | 3512.7 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139167239 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02936nmm a2200469zc 4500</leader><controlfield tag="001">BV043943517</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190725 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139167239</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-16723-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139167239</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139167239</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992888668</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043943517</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7/3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andrews, George E.</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122581342</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integer partitions</subfield><subfield code="c">George E. Andrews, Kimmo Eriksson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 141 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of integer partitions is a subject of enduring interest. A major research area in its own right, it has found numerous applications, and celebrated results such as the Rogers-Ramanujan identities make it a topic filled with the true romance of mathematics. The aim in this introductory textbook is to provide an accessible and wide ranging introduction to partitions, without requiring anything more of the reader than some familiarity with polynomials and infinite series. Many exercises are included, together with some solutions and helpful hints. The book has a short introduction followed by an initial chapter introducing Euler's famous theorem on partitions with odd parts and partitions with distinct parts. This is followed by chapters titled: Ferrers Graphs, The Rogers-Ramanujan Identities, Generating Functions, Formulas for Partition Functions, Gaussian Polynomials, Durfee Squares, Euler Refined, Plane Partitions, Growing Ferrers Boards, and Musings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partitions (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partition</subfield><subfield code="g">Zahlentheorie</subfield><subfield code="0">(DE-588)4212684-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partition</subfield><subfield code="g">Zahlentheorie</subfield><subfield code="0">(DE-588)4212684-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eriksson, Kimmo</subfield><subfield code="d">1967-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)139282203</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-521-84118-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-0-521-60090-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139167239</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029352488</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139167239</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139167239</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139167239</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UER_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043943517 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:19Z |
institution | BVB |
isbn | 9781139167239 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029352488 |
oclc_num | 992888668 |
open_access_boolean | |
owner | DE-12 DE-29 DE-92 |
owner_facet | DE-12 DE-29 DE-92 |
physical | 1 online resource (x, 141 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UER_PDA_CBO_Kauf |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Andrews, George E. 1938- Verfasser (DE-588)122581342 aut Integer partitions George E. Andrews, Kimmo Eriksson Cambridge Cambridge University Press 2012 1 online resource (x, 141 pages) txt rdacontent c rdamedia cr rdacarrier The theory of integer partitions is a subject of enduring interest. A major research area in its own right, it has found numerous applications, and celebrated results such as the Rogers-Ramanujan identities make it a topic filled with the true romance of mathematics. The aim in this introductory textbook is to provide an accessible and wide ranging introduction to partitions, without requiring anything more of the reader than some familiarity with polynomials and infinite series. Many exercises are included, together with some solutions and helpful hints. The book has a short introduction followed by an initial chapter introducing Euler's famous theorem on partitions with odd parts and partitions with distinct parts. This is followed by chapters titled: Ferrers Graphs, The Rogers-Ramanujan Identities, Generating Functions, Formulas for Partition Functions, Gaussian Polynomials, Durfee Squares, Euler Refined, Plane Partitions, Growing Ferrers Boards, and Musings Partitions (Mathematics) Partition Zahlentheorie (DE-588)4212684-8 gnd rswk-swf Partition Zahlentheorie (DE-588)4212684-8 s 1\p DE-604 Eriksson, Kimmo 1967- Sonstige (DE-588)139282203 oth Erscheint auch als Druck-Ausgabe, Hardcover 978-0-521-84118-4 Erscheint auch als Druck-Ausgabe, Paperback 978-0-521-60090-3 https://doi.org/10.1017/CBO9781139167239 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Andrews, George E. 1938- Integer partitions Partitions (Mathematics) Partition Zahlentheorie (DE-588)4212684-8 gnd |
subject_GND | (DE-588)4212684-8 |
title | Integer partitions |
title_auth | Integer partitions |
title_exact_search | Integer partitions |
title_full | Integer partitions George E. Andrews, Kimmo Eriksson |
title_fullStr | Integer partitions George E. Andrews, Kimmo Eriksson |
title_full_unstemmed | Integer partitions George E. Andrews, Kimmo Eriksson |
title_short | Integer partitions |
title_sort | integer partitions |
topic | Partitions (Mathematics) Partition Zahlentheorie (DE-588)4212684-8 gnd |
topic_facet | Partitions (Mathematics) Partition Zahlentheorie |
url | https://doi.org/10.1017/CBO9781139167239 |
work_keys_str_mv | AT andrewsgeorgee integerpartitions AT erikssonkimmo integerpartitions |