Advances in statistical bioinformatics: models and integrative inference for high-throughput data
Providing genome-informed personalized treatment is a goal of modern medicine. Identifying new translational targets in nucleic acid characterizations is an important step toward that goal. The information tsunami produced by such genome-scale investigations is stimulating parallel developments in s...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2013
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Providing genome-informed personalized treatment is a goal of modern medicine. Identifying new translational targets in nucleic acid characterizations is an important step toward that goal. The information tsunami produced by such genome-scale investigations is stimulating parallel developments in statistical methodology and inference, analytical frameworks, and computational tools. Within the context of genomic medicine and with a strong focus on cancer research, this book describes the integration of high-throughput bioinformatics data from multiple platforms to inform our understanding of the functional consequences of genomic alterations. This includes rigorous and scalable methods for simultaneously handling diverse data types such as gene expression array, miRNA, copy number, methylation, and next-generation sequencing data. This material is written for statisticians who are interested in modeling and analyzing high-throughput data. Chapters by experts in the field offer a thorough introduction to the biological and technical principles behind multiplatform high-throughput experimentation |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xv, 481 pages) |
ISBN: | 9781139226448 |
DOI: | 10.1017/CBO9781139226448 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043942583 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2013 |||| o||u| ||||||eng d | ||
020 | |a 9781139226448 |c Online |9 978-1-139-22644-8 | ||
024 | 7 | |a 10.1017/CBO9781139226448 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139226448 | ||
035 | |a (OCoLC)967602200 | ||
035 | |a (DE-599)BVBBV043942583 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 572.80285 |2 23 | |
245 | 1 | 0 | |a Advances in statistical bioinformatics |b models and integrative inference for high-throughput data |c edited by Kim-Anh Do, The University of Texas M.D. Anderson Cancer Center, Zhaohui Steven Qin, Emory University, Atlanta, GA, Marina Vannucci, Rice University, Houston, TX. |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2013 | |
300 | |a 1 online resource (xv, 481 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Providing genome-informed personalized treatment is a goal of modern medicine. Identifying new translational targets in nucleic acid characterizations is an important step toward that goal. The information tsunami produced by such genome-scale investigations is stimulating parallel developments in statistical methodology and inference, analytical frameworks, and computational tools. Within the context of genomic medicine and with a strong focus on cancer research, this book describes the integration of high-throughput bioinformatics data from multiple platforms to inform our understanding of the functional consequences of genomic alterations. This includes rigorous and scalable methods for simultaneously handling diverse data types such as gene expression array, miRNA, copy number, methylation, and next-generation sequencing data. This material is written for statisticians who are interested in modeling and analyzing high-throughput data. Chapters by experts in the field offer a thorough introduction to the biological and technical principles behind multiplatform high-throughput experimentation | ||
650 | 4 | |a Bioinformatics / Statistical methods | |
650 | 4 | |a Biometry | |
650 | 4 | |a Genetics / Technique | |
700 | 1 | |a Do, Kim-Anh |d 1960- |4 edt | |
700 | 1 | |a Qin, Steven |d 1972- |4 edt | |
700 | 1 | |a Vannucci, Marina |d 1966- |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-02752-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139226448 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351553 | ||
966 | e | |u https://doi.org/10.1017/CBO9781139226448 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139226448 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176885588951040 |
---|---|
any_adam_object | |
author2 | Do, Kim-Anh 1960- Qin, Steven 1972- Vannucci, Marina 1966- |
author2_role | edt edt edt |
author2_variant | k a d kad s q sq m v mv |
author_facet | Do, Kim-Anh 1960- Qin, Steven 1972- Vannucci, Marina 1966- |
building | Verbundindex |
bvnumber | BV043942583 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139226448 (OCoLC)967602200 (DE-599)BVBBV043942583 |
dewey-full | 572.80285 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 572 - Biochemistry |
dewey-raw | 572.80285 |
dewey-search | 572.80285 |
dewey-sort | 3572.80285 |
dewey-tens | 570 - Biology |
discipline | Biologie |
doi_str_mv | 10.1017/CBO9781139226448 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02918nmm a2200433zc 4500</leader><controlfield tag="001">BV043942583</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139226448</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-22644-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139226448</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139226448</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967602200</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942583</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572.80285</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in statistical bioinformatics</subfield><subfield code="b">models and integrative inference for high-throughput data</subfield><subfield code="c">edited by Kim-Anh Do, The University of Texas M.D. Anderson Cancer Center, Zhaohui Steven Qin, Emory University, Atlanta, GA, Marina Vannucci, Rice University, Houston, TX.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 481 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Providing genome-informed personalized treatment is a goal of modern medicine. Identifying new translational targets in nucleic acid characterizations is an important step toward that goal. The information tsunami produced by such genome-scale investigations is stimulating parallel developments in statistical methodology and inference, analytical frameworks, and computational tools. Within the context of genomic medicine and with a strong focus on cancer research, this book describes the integration of high-throughput bioinformatics data from multiple platforms to inform our understanding of the functional consequences of genomic alterations. This includes rigorous and scalable methods for simultaneously handling diverse data types such as gene expression array, miRNA, copy number, methylation, and next-generation sequencing data. This material is written for statisticians who are interested in modeling and analyzing high-throughput data. Chapters by experts in the field offer a thorough introduction to the biological and technical principles behind multiplatform high-throughput experimentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioinformatics / Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetics / Technique</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Do, Kim-Anh</subfield><subfield code="d">1960-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qin, Steven</subfield><subfield code="d">1972-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vannucci, Marina</subfield><subfield code="d">1966-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-02752-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139226448</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351553</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139226448</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139226448</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942583 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:18Z |
institution | BVB |
isbn | 9781139226448 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351553 |
oclc_num | 967602200 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xv, 481 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Advances in statistical bioinformatics models and integrative inference for high-throughput data edited by Kim-Anh Do, The University of Texas M.D. Anderson Cancer Center, Zhaohui Steven Qin, Emory University, Atlanta, GA, Marina Vannucci, Rice University, Houston, TX. Cambridge Cambridge University Press 2013 1 online resource (xv, 481 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Providing genome-informed personalized treatment is a goal of modern medicine. Identifying new translational targets in nucleic acid characterizations is an important step toward that goal. The information tsunami produced by such genome-scale investigations is stimulating parallel developments in statistical methodology and inference, analytical frameworks, and computational tools. Within the context of genomic medicine and with a strong focus on cancer research, this book describes the integration of high-throughput bioinformatics data from multiple platforms to inform our understanding of the functional consequences of genomic alterations. This includes rigorous and scalable methods for simultaneously handling diverse data types such as gene expression array, miRNA, copy number, methylation, and next-generation sequencing data. This material is written for statisticians who are interested in modeling and analyzing high-throughput data. Chapters by experts in the field offer a thorough introduction to the biological and technical principles behind multiplatform high-throughput experimentation Bioinformatics / Statistical methods Biometry Genetics / Technique Do, Kim-Anh 1960- edt Qin, Steven 1972- edt Vannucci, Marina 1966- edt Erscheint auch als Druckausgabe 978-1-107-02752-7 https://doi.org/10.1017/CBO9781139226448 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Advances in statistical bioinformatics models and integrative inference for high-throughput data Bioinformatics / Statistical methods Biometry Genetics / Technique |
title | Advances in statistical bioinformatics models and integrative inference for high-throughput data |
title_auth | Advances in statistical bioinformatics models and integrative inference for high-throughput data |
title_exact_search | Advances in statistical bioinformatics models and integrative inference for high-throughput data |
title_full | Advances in statistical bioinformatics models and integrative inference for high-throughput data edited by Kim-Anh Do, The University of Texas M.D. Anderson Cancer Center, Zhaohui Steven Qin, Emory University, Atlanta, GA, Marina Vannucci, Rice University, Houston, TX. |
title_fullStr | Advances in statistical bioinformatics models and integrative inference for high-throughput data edited by Kim-Anh Do, The University of Texas M.D. Anderson Cancer Center, Zhaohui Steven Qin, Emory University, Atlanta, GA, Marina Vannucci, Rice University, Houston, TX. |
title_full_unstemmed | Advances in statistical bioinformatics models and integrative inference for high-throughput data edited by Kim-Anh Do, The University of Texas M.D. Anderson Cancer Center, Zhaohui Steven Qin, Emory University, Atlanta, GA, Marina Vannucci, Rice University, Houston, TX. |
title_short | Advances in statistical bioinformatics |
title_sort | advances in statistical bioinformatics models and integrative inference for high throughput data |
title_sub | models and integrative inference for high-throughput data |
topic | Bioinformatics / Statistical methods Biometry Genetics / Technique |
topic_facet | Bioinformatics / Statistical methods Biometry Genetics / Technique |
url | https://doi.org/10.1017/CBO9781139226448 |
work_keys_str_mv | AT dokimanh advancesinstatisticalbioinformaticsmodelsandintegrativeinferenceforhighthroughputdata AT qinsteven advancesinstatisticalbioinformaticsmodelsandintegrativeinferenceforhighthroughputdata AT vannuccimarina advancesinstatisticalbioinformaticsmodelsandintegrativeinferenceforhighthroughputdata |