Aperiodic order, Volume 1, A mathematical invitation:
Quasicrystals are non-periodic solids that were discovered in 1982 by Dan Shechtman, Nobel Prize Laureate in Chemistry 2011. The underlying mathematics, known as the theory of aperiodic order, is the subject of this comprehensive multi-volume series. This first volume provides a graduate-level intro...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2013
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 149 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBY01 UER01 Volltext |
Zusammenfassung: | Quasicrystals are non-periodic solids that were discovered in 1982 by Dan Shechtman, Nobel Prize Laureate in Chemistry 2011. The underlying mathematics, known as the theory of aperiodic order, is the subject of this comprehensive multi-volume series. This first volume provides a graduate-level introduction to the many facets of this relatively new area of mathematics. Special attention is given to methods from algebra, discrete geometry and harmonic analysis, while the main focus is on topics motivated by physics and crystallography. In particular, the authors provide a systematic exposition of the mathematical theory of kinematic diffraction. Numerous illustrations and worked-out examples help the reader to bridge the gap between theory and application. The authors also point to more advanced topics to show how the theory interacts with other areas of pure and applied mathematics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvi, 531 pages) |
ISBN: | 9781139025256 |
DOI: | 10.1017/CBO9781139025256 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942471 | ||
003 | DE-604 | ||
005 | 20240411 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2013 |||| o||u| ||||||eng d | ||
020 | |a 9781139025256 |c Online |9 978-1-139-02525-6 | ||
024 | 7 | |a 10.1017/CBO9781139025256 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139025256 | ||
035 | |a (OCoLC)967602620 | ||
035 | |a (DE-599)BVBBV043942471 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-29 |a DE-92 |a DE-706 | ||
082 | 0 | |a 548.7 |2 23 | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Baake, Michael |e Verfasser |4 aut | |
245 | 1 | 0 | |a Aperiodic order, Volume 1, A mathematical invitation |c Michael Baake, Uwe Grimm |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2013 | |
300 | |a 1 online resource (xvi, 531 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications |v volume 149 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Quasicrystals are non-periodic solids that were discovered in 1982 by Dan Shechtman, Nobel Prize Laureate in Chemistry 2011. The underlying mathematics, known as the theory of aperiodic order, is the subject of this comprehensive multi-volume series. This first volume provides a graduate-level introduction to the many facets of this relatively new area of mathematics. Special attention is given to methods from algebra, discrete geometry and harmonic analysis, while the main focus is on topics motivated by physics and crystallography. In particular, the authors provide a systematic exposition of the mathematical theory of kinematic diffraction. Numerous illustrations and worked-out examples help the reader to bridge the gap between theory and application. The authors also point to more advanced topics to show how the theory interacts with other areas of pure and applied mathematics | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Aperiodic tilings | |
650 | 4 | |a Quasicrystals / Mathematics | |
700 | 1 | |a Grimm, Uwe |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-86991-1 |
830 | 0 | |a Encyclopedia of mathematics and its applications |v volume 149 |w (DE-604)BV044777929 |9 volume 149 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139025256 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351441 | ||
966 | e | |u https://doi.org/10.1017/CBO9781139025256 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139025256 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139025256 |l UBY01 |p ZDB-20-CBO |q UBY_PDA_CBO_Kauf_24 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139025256 |l UER01 |p ZDB-20-CBO |q UER_PDA_CBO_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176885295349760 |
---|---|
any_adam_object | |
author | Baake, Michael |
author_facet | Baake, Michael |
author_role | aut |
author_sort | Baake, Michael |
author_variant | m b mb |
building | Verbundindex |
bvnumber | BV043942471 |
classification_rvk | SK 380 SK 950 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139025256 (OCoLC)967602620 (DE-599)BVBBV043942471 |
dewey-full | 548.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 548 - Crystallography |
dewey-raw | 548.7 |
dewey-search | 548.7 |
dewey-sort | 3548.7 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Mathematik |
doi_str_mv | 10.1017/CBO9781139025256 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02978nmm a2200493zcb4500</leader><controlfield tag="001">BV043942471</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240411 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139025256</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-02525-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139025256</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139025256</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967602620</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942471</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">548.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baake, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Aperiodic order, Volume 1, A mathematical invitation</subfield><subfield code="c">Michael Baake, Uwe Grimm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 531 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 149</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quasicrystals are non-periodic solids that were discovered in 1982 by Dan Shechtman, Nobel Prize Laureate in Chemistry 2011. The underlying mathematics, known as the theory of aperiodic order, is the subject of this comprehensive multi-volume series. This first volume provides a graduate-level introduction to the many facets of this relatively new area of mathematics. Special attention is given to methods from algebra, discrete geometry and harmonic analysis, while the main focus is on topics motivated by physics and crystallography. In particular, the authors provide a systematic exposition of the mathematical theory of kinematic diffraction. Numerous illustrations and worked-out examples help the reader to bridge the gap between theory and application. The authors also point to more advanced topics to show how the theory interacts with other areas of pure and applied mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aperiodic tilings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasicrystals / Mathematics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grimm, Uwe</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-86991-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 149</subfield><subfield code="w">(DE-604)BV044777929</subfield><subfield code="9">volume 149</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139025256</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351441</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139025256</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139025256</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139025256</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBY_PDA_CBO_Kauf_24</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139025256</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UER_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942471 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9781139025256 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351441 |
oclc_num | 967602620 |
open_access_boolean | |
owner | DE-12 DE-29 DE-92 DE-706 |
owner_facet | DE-12 DE-29 DE-92 DE-706 |
physical | 1 online resource (xvi, 531 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBY_PDA_CBO_Kauf_24 ZDB-20-CBO UER_PDA_CBO_Kauf |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge University Press |
record_format | marc |
series | Encyclopedia of mathematics and its applications |
series2 | Encyclopedia of mathematics and its applications |
spelling | Baake, Michael Verfasser aut Aperiodic order, Volume 1, A mathematical invitation Michael Baake, Uwe Grimm Cambridge Cambridge University Press 2013 1 online resource (xvi, 531 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 149 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Quasicrystals are non-periodic solids that were discovered in 1982 by Dan Shechtman, Nobel Prize Laureate in Chemistry 2011. The underlying mathematics, known as the theory of aperiodic order, is the subject of this comprehensive multi-volume series. This first volume provides a graduate-level introduction to the many facets of this relatively new area of mathematics. Special attention is given to methods from algebra, discrete geometry and harmonic analysis, while the main focus is on topics motivated by physics and crystallography. In particular, the authors provide a systematic exposition of the mathematical theory of kinematic diffraction. Numerous illustrations and worked-out examples help the reader to bridge the gap between theory and application. The authors also point to more advanced topics to show how the theory interacts with other areas of pure and applied mathematics Mathematik Aperiodic tilings Quasicrystals / Mathematics Grimm, Uwe Sonstige oth Erscheint auch als Druck-Ausgabe 978-0-521-86991-1 Encyclopedia of mathematics and its applications volume 149 (DE-604)BV044777929 volume 149 https://doi.org/10.1017/CBO9781139025256 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Baake, Michael Aperiodic order, Volume 1, A mathematical invitation Encyclopedia of mathematics and its applications Mathematik Aperiodic tilings Quasicrystals / Mathematics |
title | Aperiodic order, Volume 1, A mathematical invitation |
title_auth | Aperiodic order, Volume 1, A mathematical invitation |
title_exact_search | Aperiodic order, Volume 1, A mathematical invitation |
title_full | Aperiodic order, Volume 1, A mathematical invitation Michael Baake, Uwe Grimm |
title_fullStr | Aperiodic order, Volume 1, A mathematical invitation Michael Baake, Uwe Grimm |
title_full_unstemmed | Aperiodic order, Volume 1, A mathematical invitation Michael Baake, Uwe Grimm |
title_short | Aperiodic order, Volume 1, A mathematical invitation |
title_sort | aperiodic order volume 1 a mathematical invitation |
topic | Mathematik Aperiodic tilings Quasicrystals / Mathematics |
topic_facet | Mathematik Aperiodic tilings Quasicrystals / Mathematics |
url | https://doi.org/10.1017/CBO9781139025256 |
volume_link | (DE-604)BV044777929 |
work_keys_str_mv | AT baakemichael aperiodicordervolume1amathematicalinvitation AT grimmuwe aperiodicordervolume1amathematicalinvitation |