Continuous crossed products and type III Von Neumann algebras:
The theory of von Neumann algebras has undergone rapid development since the work of Tonita, Takesaki and Conner. These notes, based on lectures given at the University of Newcastle upon Tyne, provide an introduction to the subject and demonstrate the important role of the theory of crossed products...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1978
|
Schriftenreihe: | London Mathematical Society lecture note series
31 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The theory of von Neumann algebras has undergone rapid development since the work of Tonita, Takesaki and Conner. These notes, based on lectures given at the University of Newcastle upon Tyne, provide an introduction to the subject and demonstrate the important role of the theory of crossed products. Part I deals with general continuous crossed products and proves the commutation theorem and the duality theorem. Part II discusses the structure of Type III von Neumann algebras and considers crossed products with modular actions. Restricting the treatment to the case of o-finite von Neumann algebras enables the author to work with faithful normal states |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (vii, 68 pages) |
ISBN: | 9780511662393 |
DOI: | 10.1017/CBO9780511662393 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942316 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1978 |||| o||u| ||||||eng d | ||
020 | |a 9780511662393 |c Online |9 978-0-511-66239-3 | ||
024 | 7 | |a 10.1017/CBO9780511662393 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511662393 | ||
035 | |a (OCoLC)967683966 | ||
035 | |a (DE-599)BVBBV043942316 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.55 |2 18eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
100 | 1 | |a Daele, Alfons van |e Verfasser |4 aut | |
245 | 1 | 0 | |a Continuous crossed products and type III Von Neumann algebras |c A. Van Daele |
246 | 1 | 3 | |a Continuous Crossed Products & Type III Von Neumann Algebras |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1978 | |
300 | |a 1 online resource (vii, 68 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 31 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a The theory of von Neumann algebras has undergone rapid development since the work of Tonita, Takesaki and Conner. These notes, based on lectures given at the University of Newcastle upon Tyne, provide an introduction to the subject and demonstrate the important role of the theory of crossed products. Part I deals with general continuous crossed products and proves the commutation theorem and the duality theorem. Part II discusses the structure of Type III von Neumann algebras and considers crossed products with modular actions. Restricting the treatment to the case of o-finite von Neumann algebras enables the author to work with faithful normal states | ||
650 | 4 | |a Von Neumann algebras / Crossed products | |
650 | 0 | 7 | |a VonNeumann-Algebra |0 (DE-588)4388395-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operatoralgebra |0 (DE-588)4129366-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a VonNeumann-Algebra |0 (DE-588)4388395-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Operatoralgebra |0 (DE-588)4129366-6 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-21975-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511662393 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351286 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511662393 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511662393 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884977631232 |
---|---|
any_adam_object | |
author | Daele, Alfons van |
author_facet | Daele, Alfons van |
author_role | aut |
author_sort | Daele, Alfons van |
author_variant | a v d av avd |
building | Verbundindex |
bvnumber | BV043942316 |
classification_rvk | SI 320 SK 600 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511662393 (OCoLC)967683966 (DE-599)BVBBV043942316 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511662393 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02663nmm a2200505zcb4500</leader><controlfield tag="001">BV043942316</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1978 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662393</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66239-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511662393</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511662393</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967683966</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942316</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">18eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Daele, Alfons van</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continuous crossed products and type III Von Neumann algebras</subfield><subfield code="c">A. Van Daele</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Continuous Crossed Products & Type III Von Neumann Algebras</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1978</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 68 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">31</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of von Neumann algebras has undergone rapid development since the work of Tonita, Takesaki and Conner. These notes, based on lectures given at the University of Newcastle upon Tyne, provide an introduction to the subject and demonstrate the important role of the theory of crossed products. Part I deals with general continuous crossed products and proves the commutation theorem and the duality theorem. Part II discusses the structure of Type III von Neumann algebras and considers crossed products with modular actions. Restricting the treatment to the case of o-finite von Neumann algebras enables the author to work with faithful normal states</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Von Neumann algebras / Crossed products</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">VonNeumann-Algebra</subfield><subfield code="0">(DE-588)4388395-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatoralgebra</subfield><subfield code="0">(DE-588)4129366-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">VonNeumann-Algebra</subfield><subfield code="0">(DE-588)4388395-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Operatoralgebra</subfield><subfield code="0">(DE-588)4129366-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-21975-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511662393</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351286</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662393</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662393</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942316 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511662393 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351286 |
oclc_num | 967683966 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (vii, 68 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1978 |
publishDateSearch | 1978 |
publishDateSort | 1978 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Daele, Alfons van Verfasser aut Continuous crossed products and type III Von Neumann algebras A. Van Daele Continuous Crossed Products & Type III Von Neumann Algebras Cambridge Cambridge University Press 1978 1 online resource (vii, 68 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 31 Title from publisher's bibliographic system (viewed on 05 Oct 2015) The theory of von Neumann algebras has undergone rapid development since the work of Tonita, Takesaki and Conner. These notes, based on lectures given at the University of Newcastle upon Tyne, provide an introduction to the subject and demonstrate the important role of the theory of crossed products. Part I deals with general continuous crossed products and proves the commutation theorem and the duality theorem. Part II discusses the structure of Type III von Neumann algebras and considers crossed products with modular actions. Restricting the treatment to the case of o-finite von Neumann algebras enables the author to work with faithful normal states Von Neumann algebras / Crossed products VonNeumann-Algebra (DE-588)4388395-3 gnd rswk-swf Operatoralgebra (DE-588)4129366-6 gnd rswk-swf VonNeumann-Algebra (DE-588)4388395-3 s DE-604 Operatoralgebra (DE-588)4129366-6 s Erscheint auch als Druckausgabe 978-0-521-21975-4 https://doi.org/10.1017/CBO9780511662393 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Daele, Alfons van Continuous crossed products and type III Von Neumann algebras Von Neumann algebras / Crossed products VonNeumann-Algebra (DE-588)4388395-3 gnd Operatoralgebra (DE-588)4129366-6 gnd |
subject_GND | (DE-588)4388395-3 (DE-588)4129366-6 |
title | Continuous crossed products and type III Von Neumann algebras |
title_alt | Continuous Crossed Products & Type III Von Neumann Algebras |
title_auth | Continuous crossed products and type III Von Neumann algebras |
title_exact_search | Continuous crossed products and type III Von Neumann algebras |
title_full | Continuous crossed products and type III Von Neumann algebras A. Van Daele |
title_fullStr | Continuous crossed products and type III Von Neumann algebras A. Van Daele |
title_full_unstemmed | Continuous crossed products and type III Von Neumann algebras A. Van Daele |
title_short | Continuous crossed products and type III Von Neumann algebras |
title_sort | continuous crossed products and type iii von neumann algebras |
topic | Von Neumann algebras / Crossed products VonNeumann-Algebra (DE-588)4388395-3 gnd Operatoralgebra (DE-588)4129366-6 gnd |
topic_facet | Von Neumann algebras / Crossed products VonNeumann-Algebra Operatoralgebra |
url | https://doi.org/10.1017/CBO9780511662393 |
work_keys_str_mv | AT daelealfonsvan continuouscrossedproductsandtypeiiivonneumannalgebras AT daelealfonsvan continuouscrossedproductstypeiiivonneumannalgebras |