Classical solutions in quantum field theory: solitons and instantons in high energy physics
Classical solutions play an important role in quantum field theory, high-energy physics and cosmology. Real-time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for early universe cosmology...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2012
|
Schriftenreihe: | Cambridge monographs on mathematical physics
|
Schlagworte: | |
Online-Zugang: | DE-12 DE-92 DE-19 Volltext |
Zusammenfassung: | Classical solutions play an important role in quantum field theory, high-energy physics and cosmology. Real-time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for early universe cosmology. Imaginary-time Euclidean instantons are responsible for important nonperturbative effects, while Euclidean bounce solutions govern transitions between metastable states. Written for advanced graduate students and researchers in elementary particle physics, cosmology and related fields, this book brings the reader up to the level of current research in the field. The first half of the book discusses the most important classes of solitons: kinks, vortices and magnetic monopoles. The cosmological and observational constraints on these are covered, as are more formal aspects, including BPS solitons and their connection with supersymmetry. The second half is devoted to Euclidean solutions, with particular emphasis on Yang–Mills instantons and on bounce solutions |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 Online-Ressource (iv, 326 Seiten) |
ISBN: | 9781139017787 |
DOI: | 10.1017/CBO9781139017787 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043942273 | ||
003 | DE-604 | ||
005 | 20240529 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2012 |||| o||u| ||||||eng d | ||
020 | |a 9781139017787 |c Online |9 978-1-139-01778-7 | ||
024 | 7 | |a 10.1017/CBO9781139017787 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139017787 | ||
035 | |a (OCoLC)874207812 | ||
035 | |a (DE-599)BVBBV043942273 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-19 | ||
082 | 0 | |a 530.12 |2 23 | |
084 | |a UO 4000 |0 (DE-625)146237: |2 rvk | ||
100 | 1 | |a Weinberg, Erick J. |e Verfasser |0 (DE-588)1027190197 |4 aut | |
245 | 1 | 0 | |a Classical solutions in quantum field theory |b solitons and instantons in high energy physics |c Erick J. Weinberg |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2012 | |
300 | |a 1 Online-Ressource (iv, 326 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on mathematical physics | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a 1. Introduction; 2. One-dimensional solitons; 3. Solitons in more dimensions -- vortices and strings; 4. Some topology; 5. Magnetic monopoles with U(1) charges; 6. Magnetic monopoles in larger gauge groups; 7. Cosmological implications and experimental bounds; 8. BPS solitons, supersymmetry, and duality; 9. Euclidean solutions; 10. Yang-Mills instantons; 11. Instantons, fermions, and physical consequences; 12. Vacuum decay; Appendixes; References; Index | |
520 | |a Classical solutions play an important role in quantum field theory, high-energy physics and cosmology. Real-time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for early universe cosmology. Imaginary-time Euclidean instantons are responsible for important nonperturbative effects, while Euclidean bounce solutions govern transitions between metastable states. Written for advanced graduate students and researchers in elementary particle physics, cosmology and related fields, this book brings the reader up to the level of current research in the field. The first half of the book discusses the most important classes of solitons: kinks, vortices and magnetic monopoles. The cosmological and observational constraints on these are covered, as are more formal aspects, including BPS solitons and their connection with supersymmetry. The second half is devoted to Euclidean solutions, with particular emphasis on Yang–Mills instantons and on bounce solutions | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Quantum theory / Mathematics | |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Instanton |0 (DE-588)4161874-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quasiklassisches Modell |0 (DE-588)4318601-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Soliton |0 (DE-588)4135213-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | 1 | |a Quasiklassisches Modell |0 (DE-588)4318601-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 1 | 1 | |a Instanton |0 (DE-588)4161874-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 2 | 1 | |a Soliton |0 (DE-588)4135213-0 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-11463-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-43805-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139017787 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-20-CBO | ||
966 | e | |u https://doi.org/10.1017/CBO9781139017787 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139017787 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139017787 |l DE-19 |p ZDB-20-CBO |q UBM_PDA_CBO_Kauf_2024 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1805074404817764352 |
---|---|
adam_text | |
any_adam_object | |
author | Weinberg, Erick J. |
author_GND | (DE-588)1027190197 |
author_facet | Weinberg, Erick J. |
author_role | aut |
author_sort | Weinberg, Erick J. |
author_variant | e j w ej ejw |
building | Verbundindex |
bvnumber | BV043942273 |
classification_rvk | UO 4000 |
collection | ZDB-20-CBO |
contents | 1. Introduction; 2. One-dimensional solitons; 3. Solitons in more dimensions -- vortices and strings; 4. Some topology; 5. Magnetic monopoles with U(1) charges; 6. Magnetic monopoles in larger gauge groups; 7. Cosmological implications and experimental bounds; 8. BPS solitons, supersymmetry, and duality; 9. Euclidean solutions; 10. Yang-Mills instantons; 11. Instantons, fermions, and physical consequences; 12. Vacuum decay; Appendixes; References; Index |
ctrlnum | (ZDB-20-CBO)CR9781139017787 (OCoLC)874207812 (DE-599)BVBBV043942273 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1017/CBO9781139017787 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV043942273</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240529</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139017787</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-01778-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139017787</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139017787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)874207812</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942273</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weinberg, Erick J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1027190197</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classical solutions in quantum field theory</subfield><subfield code="b">solitons and instantons in high energy physics</subfield><subfield code="c">Erick J. Weinberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (iv, 326 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Introduction; 2. One-dimensional solitons; 3. Solitons in more dimensions -- vortices and strings; 4. Some topology; 5. Magnetic monopoles with U(1) charges; 6. Magnetic monopoles in larger gauge groups; 7. Cosmological implications and experimental bounds; 8. BPS solitons, supersymmetry, and duality; 9. Euclidean solutions; 10. Yang-Mills instantons; 11. Instantons, fermions, and physical consequences; 12. Vacuum decay; Appendixes; References; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Classical solutions play an important role in quantum field theory, high-energy physics and cosmology. Real-time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for early universe cosmology. Imaginary-time Euclidean instantons are responsible for important nonperturbative effects, while Euclidean bounce solutions govern transitions between metastable states. Written for advanced graduate students and researchers in elementary particle physics, cosmology and related fields, this book brings the reader up to the level of current research in the field. The first half of the book discusses the most important classes of solitons: kinks, vortices and magnetic monopoles. The cosmological and observational constraints on these are covered, as are more formal aspects, including BPS solitons and their connection with supersymmetry. The second half is devoted to Euclidean solutions, with particular emphasis on Yang–Mills instantons and on bounce solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory / Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Instanton</subfield><subfield code="0">(DE-588)4161874-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quasiklassisches Modell</subfield><subfield code="0">(DE-588)4318601-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quasiklassisches Modell</subfield><subfield code="0">(DE-588)4318601-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Instanton</subfield><subfield code="0">(DE-588)4161874-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-11463-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-43805-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139017787</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139017787</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139017787</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139017787</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBM_PDA_CBO_Kauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942273 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T05:24:58Z |
institution | BVB |
isbn | 9781139017787 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351242 |
oclc_num | 874207812 |
open_access_boolean | |
owner | DE-12 DE-92 DE-19 DE-BY-UBM |
owner_facet | DE-12 DE-92 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (iv, 326 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBM_PDA_CBO_Kauf_2024 |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on mathematical physics |
spelling | Weinberg, Erick J. Verfasser (DE-588)1027190197 aut Classical solutions in quantum field theory solitons and instantons in high energy physics Erick J. Weinberg Cambridge Cambridge University Press 2012 1 Online-Ressource (iv, 326 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on mathematical physics Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1. Introduction; 2. One-dimensional solitons; 3. Solitons in more dimensions -- vortices and strings; 4. Some topology; 5. Magnetic monopoles with U(1) charges; 6. Magnetic monopoles in larger gauge groups; 7. Cosmological implications and experimental bounds; 8. BPS solitons, supersymmetry, and duality; 9. Euclidean solutions; 10. Yang-Mills instantons; 11. Instantons, fermions, and physical consequences; 12. Vacuum decay; Appendixes; References; Index Classical solutions play an important role in quantum field theory, high-energy physics and cosmology. Real-time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for early universe cosmology. Imaginary-time Euclidean instantons are responsible for important nonperturbative effects, while Euclidean bounce solutions govern transitions between metastable states. Written for advanced graduate students and researchers in elementary particle physics, cosmology and related fields, this book brings the reader up to the level of current research in the field. The first half of the book discusses the most important classes of solitons: kinks, vortices and magnetic monopoles. The cosmological and observational constraints on these are covered, as are more formal aspects, including BPS solitons and their connection with supersymmetry. The second half is devoted to Euclidean solutions, with particular emphasis on Yang–Mills instantons and on bounce solutions Mathematik Quantentheorie Quantum theory / Mathematics Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Instanton (DE-588)4161874-9 gnd rswk-swf Quasiklassisches Modell (DE-588)4318601-4 gnd rswk-swf Soliton (DE-588)4135213-0 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 s Quasiklassisches Modell (DE-588)4318601-4 s 1\p DE-604 Instanton (DE-588)4161874-9 s 2\p DE-604 Soliton (DE-588)4135213-0 s 3\p DE-604 Erscheint auch als Druckausgabe 978-0-521-11463-9 Erscheint auch als Druckausgabe 978-1-107-43805-7 https://doi.org/10.1017/CBO9781139017787 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Weinberg, Erick J. Classical solutions in quantum field theory solitons and instantons in high energy physics 1. Introduction; 2. One-dimensional solitons; 3. Solitons in more dimensions -- vortices and strings; 4. Some topology; 5. Magnetic monopoles with U(1) charges; 6. Magnetic monopoles in larger gauge groups; 7. Cosmological implications and experimental bounds; 8. BPS solitons, supersymmetry, and duality; 9. Euclidean solutions; 10. Yang-Mills instantons; 11. Instantons, fermions, and physical consequences; 12. Vacuum decay; Appendixes; References; Index Mathematik Quantentheorie Quantum theory / Mathematics Quantenfeldtheorie (DE-588)4047984-5 gnd Instanton (DE-588)4161874-9 gnd Quasiklassisches Modell (DE-588)4318601-4 gnd Soliton (DE-588)4135213-0 gnd |
subject_GND | (DE-588)4047984-5 (DE-588)4161874-9 (DE-588)4318601-4 (DE-588)4135213-0 |
title | Classical solutions in quantum field theory solitons and instantons in high energy physics |
title_auth | Classical solutions in quantum field theory solitons and instantons in high energy physics |
title_exact_search | Classical solutions in quantum field theory solitons and instantons in high energy physics |
title_full | Classical solutions in quantum field theory solitons and instantons in high energy physics Erick J. Weinberg |
title_fullStr | Classical solutions in quantum field theory solitons and instantons in high energy physics Erick J. Weinberg |
title_full_unstemmed | Classical solutions in quantum field theory solitons and instantons in high energy physics Erick J. Weinberg |
title_short | Classical solutions in quantum field theory |
title_sort | classical solutions in quantum field theory solitons and instantons in high energy physics |
title_sub | solitons and instantons in high energy physics |
topic | Mathematik Quantentheorie Quantum theory / Mathematics Quantenfeldtheorie (DE-588)4047984-5 gnd Instanton (DE-588)4161874-9 gnd Quasiklassisches Modell (DE-588)4318601-4 gnd Soliton (DE-588)4135213-0 gnd |
topic_facet | Mathematik Quantentheorie Quantum theory / Mathematics Quantenfeldtheorie Instanton Quasiklassisches Modell Soliton |
url | https://doi.org/10.1017/CBO9781139017787 |
work_keys_str_mv | AT weinbergerickj classicalsolutionsinquantumfieldtheorysolitonsandinstantonsinhighenergyphysics |