Microlocal analysis for differential operators: an introduction
This short introduction to microlocal analysis is presented, in the spirit of Hörmander, in the classical framework of partial differential equations. This theory has important applications in areas such as harmonic and complex analysis, and also in theoretical physics. Here Grigis and Sjöstrand emp...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1994
|
Schriftenreihe: | London Mathematical Society lecture note series
196 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | This short introduction to microlocal analysis is presented, in the spirit of Hörmander, in the classical framework of partial differential equations. This theory has important applications in areas such as harmonic and complex analysis, and also in theoretical physics. Here Grigis and Sjöstrand emphasise the basic tools, especially the method of stationary phase, and they discuss wavefront sets, elliptic operators, local symplectic geometry, and WKB-constructions. The contents of the book correspond to a graduate course given many times by the authors. It should prove to be useful to mathematicians and theoretical physicists, either to enrich their general knowledge of this area, or as preparation for the current research literature |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (151 pages) |
ISBN: | 9780511721441 |
DOI: | 10.1017/CBO9780511721441 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942259 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1994 |||| o||u| ||||||eng d | ||
020 | |a 9780511721441 |c Online |9 978-0-511-72144-1 | ||
024 | 7 | |a 10.1017/CBO9780511721441 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511721441 | ||
035 | |a (OCoLC)967776361 | ||
035 | |a (DE-599)BVBBV043942259 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.7242 |2 20 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Grigis, Alain |e Verfasser |4 aut | |
245 | 1 | 0 | |a Microlocal analysis for differential operators |b an introduction |c Alain Grigis, Johannes Sjöstrand |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1994 | |
300 | |a 1 online resource (151 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 196 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a 1. Symbols and oscillatory integrals -- 2. The method of stationary phase -- 3. Pseudodifferential operators -- 4. Application to elliptic operators and L[superscript 2] continuity -- 5. Local symplectic geometry I (Hamilton-Jacobi theory) -- 6. The strictly hyperbolic Cauchy problem construction of a parametrix -- 7. The wavefront set (singular spectrum) of a distribution -- 8. Propagation of singularities for operators of real principle type -- 9. Local symplectic geometry II -- 10. Canonical transformations of pseudodifferential operators -- 11. Global theory of Fourier integral operators -- 12. Spectral theory for elliptic operators | |
520 | |a This short introduction to microlocal analysis is presented, in the spirit of Hörmander, in the classical framework of partial differential equations. This theory has important applications in areas such as harmonic and complex analysis, and also in theoretical physics. Here Grigis and Sjöstrand emphasise the basic tools, especially the method of stationary phase, and they discuss wavefront sets, elliptic operators, local symplectic geometry, and WKB-constructions. The contents of the book correspond to a graduate course given many times by the authors. It should prove to be useful to mathematicians and theoretical physicists, either to enrich their general knowledge of this area, or as preparation for the current research literature | ||
650 | 4 | |a Differential operators | |
650 | 4 | |a Microlocal analysis | |
650 | 0 | 7 | |a Differentialoperator |0 (DE-588)4012251-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mikrolokale Analysis |0 (DE-588)4169832-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialoperator |0 (DE-588)4012251-7 |D s |
689 | 0 | 1 | |a Mikrolokale Analysis |0 (DE-588)4169832-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Sjöstrand, J. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-44986-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511721441 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351228 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511721441 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511721441 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884874870784 |
---|---|
any_adam_object | |
author | Grigis, Alain |
author_facet | Grigis, Alain |
author_role | aut |
author_sort | Grigis, Alain |
author_variant | a g ag |
building | Verbundindex |
bvnumber | BV043942259 |
classification_rvk | SI 320 SK 620 |
collection | ZDB-20-CBO |
contents | 1. Symbols and oscillatory integrals -- 2. The method of stationary phase -- 3. Pseudodifferential operators -- 4. Application to elliptic operators and L[superscript 2] continuity -- 5. Local symplectic geometry I (Hamilton-Jacobi theory) -- 6. The strictly hyperbolic Cauchy problem construction of a parametrix -- 7. The wavefront set (singular spectrum) of a distribution -- 8. Propagation of singularities for operators of real principle type -- 9. Local symplectic geometry II -- 10. Canonical transformations of pseudodifferential operators -- 11. Global theory of Fourier integral operators -- 12. Spectral theory for elliptic operators |
ctrlnum | (ZDB-20-CBO)CR9780511721441 (OCoLC)967776361 (DE-599)BVBBV043942259 |
dewey-full | 515/.7242 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.7242 |
dewey-search | 515/.7242 |
dewey-sort | 3515 47242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511721441 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03496nmm a2200529zcb4500</leader><controlfield tag="001">BV043942259</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511721441</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-72144-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511721441</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511721441</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967776361</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942259</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.7242</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grigis, Alain</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microlocal analysis for differential operators</subfield><subfield code="b">an introduction</subfield><subfield code="c">Alain Grigis, Johannes Sjöstrand</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (151 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">196</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Symbols and oscillatory integrals -- 2. The method of stationary phase -- 3. Pseudodifferential operators -- 4. Application to elliptic operators and L[superscript 2] continuity -- 5. Local symplectic geometry I (Hamilton-Jacobi theory) -- 6. The strictly hyperbolic Cauchy problem construction of a parametrix -- 7. The wavefront set (singular spectrum) of a distribution -- 8. Propagation of singularities for operators of real principle type -- 9. Local symplectic geometry II -- 10. Canonical transformations of pseudodifferential operators -- 11. Global theory of Fourier integral operators -- 12. Spectral theory for elliptic operators</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This short introduction to microlocal analysis is presented, in the spirit of Hörmander, in the classical framework of partial differential equations. This theory has important applications in areas such as harmonic and complex analysis, and also in theoretical physics. Here Grigis and Sjöstrand emphasise the basic tools, especially the method of stationary phase, and they discuss wavefront sets, elliptic operators, local symplectic geometry, and WKB-constructions. The contents of the book correspond to a graduate course given many times by the authors. It should prove to be useful to mathematicians and theoretical physicists, either to enrich their general knowledge of this area, or as preparation for the current research literature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microlocal analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikrolokale Analysis</subfield><subfield code="0">(DE-588)4169832-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mikrolokale Analysis</subfield><subfield code="0">(DE-588)4169832-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sjöstrand, J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-44986-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511721441</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351228</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721441</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721441</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942259 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511721441 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351228 |
oclc_num | 967776361 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (151 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Grigis, Alain Verfasser aut Microlocal analysis for differential operators an introduction Alain Grigis, Johannes Sjöstrand Cambridge Cambridge University Press 1994 1 online resource (151 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 196 Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1. Symbols and oscillatory integrals -- 2. The method of stationary phase -- 3. Pseudodifferential operators -- 4. Application to elliptic operators and L[superscript 2] continuity -- 5. Local symplectic geometry I (Hamilton-Jacobi theory) -- 6. The strictly hyperbolic Cauchy problem construction of a parametrix -- 7. The wavefront set (singular spectrum) of a distribution -- 8. Propagation of singularities for operators of real principle type -- 9. Local symplectic geometry II -- 10. Canonical transformations of pseudodifferential operators -- 11. Global theory of Fourier integral operators -- 12. Spectral theory for elliptic operators This short introduction to microlocal analysis is presented, in the spirit of Hörmander, in the classical framework of partial differential equations. This theory has important applications in areas such as harmonic and complex analysis, and also in theoretical physics. Here Grigis and Sjöstrand emphasise the basic tools, especially the method of stationary phase, and they discuss wavefront sets, elliptic operators, local symplectic geometry, and WKB-constructions. The contents of the book correspond to a graduate course given many times by the authors. It should prove to be useful to mathematicians and theoretical physicists, either to enrich their general knowledge of this area, or as preparation for the current research literature Differential operators Microlocal analysis Differentialoperator (DE-588)4012251-7 gnd rswk-swf Mikrolokale Analysis (DE-588)4169832-0 gnd rswk-swf Differentialoperator (DE-588)4012251-7 s Mikrolokale Analysis (DE-588)4169832-0 s 1\p DE-604 Sjöstrand, J. Sonstige oth Erscheint auch als Druckausgabe 978-0-521-44986-1 https://doi.org/10.1017/CBO9780511721441 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Grigis, Alain Microlocal analysis for differential operators an introduction 1. Symbols and oscillatory integrals -- 2. The method of stationary phase -- 3. Pseudodifferential operators -- 4. Application to elliptic operators and L[superscript 2] continuity -- 5. Local symplectic geometry I (Hamilton-Jacobi theory) -- 6. The strictly hyperbolic Cauchy problem construction of a parametrix -- 7. The wavefront set (singular spectrum) of a distribution -- 8. Propagation of singularities for operators of real principle type -- 9. Local symplectic geometry II -- 10. Canonical transformations of pseudodifferential operators -- 11. Global theory of Fourier integral operators -- 12. Spectral theory for elliptic operators Differential operators Microlocal analysis Differentialoperator (DE-588)4012251-7 gnd Mikrolokale Analysis (DE-588)4169832-0 gnd |
subject_GND | (DE-588)4012251-7 (DE-588)4169832-0 |
title | Microlocal analysis for differential operators an introduction |
title_auth | Microlocal analysis for differential operators an introduction |
title_exact_search | Microlocal analysis for differential operators an introduction |
title_full | Microlocal analysis for differential operators an introduction Alain Grigis, Johannes Sjöstrand |
title_fullStr | Microlocal analysis for differential operators an introduction Alain Grigis, Johannes Sjöstrand |
title_full_unstemmed | Microlocal analysis for differential operators an introduction Alain Grigis, Johannes Sjöstrand |
title_short | Microlocal analysis for differential operators |
title_sort | microlocal analysis for differential operators an introduction |
title_sub | an introduction |
topic | Differential operators Microlocal analysis Differentialoperator (DE-588)4012251-7 gnd Mikrolokale Analysis (DE-588)4169832-0 gnd |
topic_facet | Differential operators Microlocal analysis Differentialoperator Mikrolokale Analysis |
url | https://doi.org/10.1017/CBO9780511721441 |
work_keys_str_mv | AT grigisalain microlocalanalysisfordifferentialoperatorsanintroduction AT sjostrandj microlocalanalysisfordifferentialoperatorsanintroduction |