Quantum inverse scattering method and correlation functions:
The quantum inverse scattering method is a means of finding exact solutions of two-dimensional models in quantum field theory and statistical physics (such as the sine-Gordon equation or the quantum non-linear Schrödinger equation). These models are the subject of much attention amongst physicists a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1993
|
Schriftenreihe: | Cambridge monographs on mathematical physics
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 URL des Erstveröffentlichers |
Zusammenfassung: | The quantum inverse scattering method is a means of finding exact solutions of two-dimensional models in quantum field theory and statistical physics (such as the sine-Gordon equation or the quantum non-linear Schrödinger equation). These models are the subject of much attention amongst physicists and mathematicians. The present work is an introduction to this important and exciting area. It consists of four parts. The first deals with the Bethe ansatz and calculation of physical quantities. The authors then tackle the theory of the quantum inverse scattering method before applying it in the second half of the book to the calculation of correlation functions. This is one of the most important applications of the method and the authors have made significant contributions to the area. Here they describe some of the most recent and general approaches and include some new results. The book will be essential reading for all mathematical physicists working in field theory and statistical physics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xix, 555 pages) |
ISBN: | 9780511628832 |
DOI: | 10.1017/CBO9780511628832 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043942151 | ||
003 | DE-604 | ||
005 | 20171114 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1993 |||| o||u| ||||||eng d | ||
020 | |a 9780511628832 |c Online |9 978-0-511-62883-2 | ||
024 | 7 | |a 10.1017/CBO9780511628832 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511628832 | ||
035 | |a (OCoLC)859644457 | ||
035 | |a (DE-599)BVBBV043942151 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-355 |a DE-92 | ||
082 | 0 | |a 530.1/43 |2 20 | |
084 | |a UK 7500 |0 (DE-625)145803: |2 rvk | ||
084 | |a UO 2000 |0 (DE-625)146210: |2 rvk | ||
100 | 1 | |a Korepin, V. E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quantum inverse scattering method and correlation functions |c V.E. Korepin, N.M. Bogoliubov, A.G. Izergin |
246 | 1 | 3 | |a Quantum Inverse Scattering Method & Correlation Functions |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1993 | |
300 | |a 1 online resource (xix, 555 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on mathematical physics | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a The quantum inverse scattering method is a means of finding exact solutions of two-dimensional models in quantum field theory and statistical physics (such as the sine-Gordon equation or the quantum non-linear Schrödinger equation). These models are the subject of much attention amongst physicists and mathematicians. The present work is an introduction to this important and exciting area. It consists of four parts. The first deals with the Bethe ansatz and calculation of physical quantities. The authors then tackle the theory of the quantum inverse scattering method before applying it in the second half of the book to the calculation of correlation functions. This is one of the most important applications of the method and the authors have made significant contributions to the area. Here they describe some of the most recent and general approaches and include some new results. The book will be essential reading for all mathematical physicists working in field theory and statistical physics | ||
650 | 4 | |a Quantum field theory | |
650 | 4 | |a Inverse scattering transform | |
650 | 4 | |a Correlation (Statistics) | |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inverses Streuproblem |0 (DE-588)4027547-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inverse Streutheorie |0 (DE-588)4561758-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Korrelationsfunktion |0 (DE-588)4286297-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vielteilchensystem |0 (DE-588)4063491-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Vielteilchensystem |0 (DE-588)4063491-7 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | 2 | |a Inverses Streuproblem |0 (DE-588)4027547-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 1 | 1 | |a Inverses Streuproblem |0 (DE-588)4027547-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 2 | 1 | |a Korrelationsfunktion |0 (DE-588)4286297-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 3 | 1 | |a Inverse Streutheorie |0 (DE-588)4561758-2 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
700 | 1 | |a Bogoli͡ubov, N. M. |e Sonstige |4 oth | |
700 | 1 | |a Izergin, A. G. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-37320-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-58646-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511628832 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351121 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511628832 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511628832 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511628832 |l UBR01 |p ZDB-20-CBO |q UBR_PDA_CBO_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884643135488 |
---|---|
any_adam_object | |
author | Korepin, V. E. |
author_facet | Korepin, V. E. |
author_role | aut |
author_sort | Korepin, V. E. |
author_variant | v e k ve vek |
building | Verbundindex |
bvnumber | BV043942151 |
classification_rvk | UK 7500 UO 2000 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511628832 (OCoLC)859644457 (DE-599)BVBBV043942151 |
dewey-full | 530.1/43 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1/43 |
dewey-search | 530.1/43 |
dewey-sort | 3530.1 243 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1017/CBO9780511628832 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04493nmm a2200781zc 4500</leader><controlfield tag="001">BV043942151</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171114 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511628832</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-62883-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511628832</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511628832</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859644457</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942151</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1/43</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 7500</subfield><subfield code="0">(DE-625)145803:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 2000</subfield><subfield code="0">(DE-625)146210:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Korepin, V. E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum inverse scattering method and correlation functions</subfield><subfield code="c">V.E. Korepin, N.M. Bogoliubov, A.G. Izergin</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Quantum Inverse Scattering Method & Correlation Functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xix, 555 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The quantum inverse scattering method is a means of finding exact solutions of two-dimensional models in quantum field theory and statistical physics (such as the sine-Gordon equation or the quantum non-linear Schrödinger equation). These models are the subject of much attention amongst physicists and mathematicians. The present work is an introduction to this important and exciting area. It consists of four parts. The first deals with the Bethe ansatz and calculation of physical quantities. The authors then tackle the theory of the quantum inverse scattering method before applying it in the second half of the book to the calculation of correlation functions. This is one of the most important applications of the method and the authors have made significant contributions to the area. Here they describe some of the most recent and general approaches and include some new results. The book will be essential reading for all mathematical physicists working in field theory and statistical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverse scattering transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Correlation (Statistics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inverses Streuproblem</subfield><subfield code="0">(DE-588)4027547-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inverse Streutheorie</subfield><subfield code="0">(DE-588)4561758-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Korrelationsfunktion</subfield><subfield code="0">(DE-588)4286297-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vielteilchensystem</subfield><subfield code="0">(DE-588)4063491-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Vielteilchensystem</subfield><subfield code="0">(DE-588)4063491-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Inverses Streuproblem</subfield><subfield code="0">(DE-588)4027547-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Inverses Streuproblem</subfield><subfield code="0">(DE-588)4027547-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Korrelationsfunktion</subfield><subfield code="0">(DE-588)4286297-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Inverse Streutheorie</subfield><subfield code="0">(DE-588)4561758-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bogoli͡ubov, N. M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Izergin, A. G.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-37320-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-58646-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511628832</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351121</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511628832</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511628832</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511628832</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942151 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511628832 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351121 |
oclc_num | 859644457 |
open_access_boolean | |
owner | DE-12 DE-355 DE-BY-UBR DE-92 |
owner_facet | DE-12 DE-355 DE-BY-UBR DE-92 |
physical | 1 online resource (xix, 555 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR_PDA_CBO_Kauf |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on mathematical physics |
spelling | Korepin, V. E. Verfasser aut Quantum inverse scattering method and correlation functions V.E. Korepin, N.M. Bogoliubov, A.G. Izergin Quantum Inverse Scattering Method & Correlation Functions Cambridge Cambridge University Press 1993 1 online resource (xix, 555 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on mathematical physics Title from publisher's bibliographic system (viewed on 05 Oct 2015) The quantum inverse scattering method is a means of finding exact solutions of two-dimensional models in quantum field theory and statistical physics (such as the sine-Gordon equation or the quantum non-linear Schrödinger equation). These models are the subject of much attention amongst physicists and mathematicians. The present work is an introduction to this important and exciting area. It consists of four parts. The first deals with the Bethe ansatz and calculation of physical quantities. The authors then tackle the theory of the quantum inverse scattering method before applying it in the second half of the book to the calculation of correlation functions. This is one of the most important applications of the method and the authors have made significant contributions to the area. Here they describe some of the most recent and general approaches and include some new results. The book will be essential reading for all mathematical physicists working in field theory and statistical physics Quantum field theory Inverse scattering transform Correlation (Statistics) Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Inverses Streuproblem (DE-588)4027547-4 gnd rswk-swf Inverse Streutheorie (DE-588)4561758-2 gnd rswk-swf Korrelationsfunktion (DE-588)4286297-8 gnd rswk-swf Vielteilchensystem (DE-588)4063491-7 gnd rswk-swf Vielteilchensystem (DE-588)4063491-7 s Mathematisches Modell (DE-588)4114528-8 s Inverses Streuproblem (DE-588)4027547-4 s 1\p DE-604 Quantenfeldtheorie (DE-588)4047984-5 s 2\p DE-604 Korrelationsfunktion (DE-588)4286297-8 s 3\p DE-604 Inverse Streutheorie (DE-588)4561758-2 s 4\p DE-604 Bogoli͡ubov, N. M. Sonstige oth Izergin, A. G. Sonstige oth Erscheint auch als Druckausgabe 978-0-521-37320-3 Erscheint auch als Druckausgabe 978-0-521-58646-7 https://doi.org/10.1017/CBO9780511628832 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Korepin, V. E. Quantum inverse scattering method and correlation functions Quantum field theory Inverse scattering transform Correlation (Statistics) Quantenfeldtheorie (DE-588)4047984-5 gnd Mathematisches Modell (DE-588)4114528-8 gnd Inverses Streuproblem (DE-588)4027547-4 gnd Inverse Streutheorie (DE-588)4561758-2 gnd Korrelationsfunktion (DE-588)4286297-8 gnd Vielteilchensystem (DE-588)4063491-7 gnd |
subject_GND | (DE-588)4047984-5 (DE-588)4114528-8 (DE-588)4027547-4 (DE-588)4561758-2 (DE-588)4286297-8 (DE-588)4063491-7 |
title | Quantum inverse scattering method and correlation functions |
title_alt | Quantum Inverse Scattering Method & Correlation Functions |
title_auth | Quantum inverse scattering method and correlation functions |
title_exact_search | Quantum inverse scattering method and correlation functions |
title_full | Quantum inverse scattering method and correlation functions V.E. Korepin, N.M. Bogoliubov, A.G. Izergin |
title_fullStr | Quantum inverse scattering method and correlation functions V.E. Korepin, N.M. Bogoliubov, A.G. Izergin |
title_full_unstemmed | Quantum inverse scattering method and correlation functions V.E. Korepin, N.M. Bogoliubov, A.G. Izergin |
title_short | Quantum inverse scattering method and correlation functions |
title_sort | quantum inverse scattering method and correlation functions |
topic | Quantum field theory Inverse scattering transform Correlation (Statistics) Quantenfeldtheorie (DE-588)4047984-5 gnd Mathematisches Modell (DE-588)4114528-8 gnd Inverses Streuproblem (DE-588)4027547-4 gnd Inverse Streutheorie (DE-588)4561758-2 gnd Korrelationsfunktion (DE-588)4286297-8 gnd Vielteilchensystem (DE-588)4063491-7 gnd |
topic_facet | Quantum field theory Inverse scattering transform Correlation (Statistics) Quantenfeldtheorie Mathematisches Modell Inverses Streuproblem Inverse Streutheorie Korrelationsfunktion Vielteilchensystem |
url | https://doi.org/10.1017/CBO9780511628832 |
work_keys_str_mv | AT korepinve quantuminversescatteringmethodandcorrelationfunctions AT bogoliubovnm quantuminversescatteringmethodandcorrelationfunctions AT izerginag quantuminversescatteringmethodandcorrelationfunctions AT korepinve quantuminversescatteringmethodcorrelationfunctions AT bogoliubovnm quantuminversescatteringmethodcorrelationfunctions AT izerginag quantuminversescatteringmethodcorrelationfunctions |