Potential flows of viscous and viscoelastic fluids:
This book illustrates how potential flows enter into the general theory of motions of viscous and viscoelastic fluids. Traditionally, the theory of potential flow is presented as a subject called 'potential flow of an inviscid fluid'; when the fluid is incompressible these fluids are, curi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2008
|
Schriftenreihe: | Cambridge aerospace series
21 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book illustrates how potential flows enter into the general theory of motions of viscous and viscoelastic fluids. Traditionally, the theory of potential flow is presented as a subject called 'potential flow of an inviscid fluid'; when the fluid is incompressible these fluids are, curiously, said to be 'perfect' or 'ideal'. This type of presentation is widespread; it can be found in every book on fluid mechanics, but it is flawed. It is never necessary and typically not useful to put the viscosity of fluids in potential (irrotational) flow to zero. The dimensionless description of potential flows of fluids with a nonzero viscosity depends on the Reynolds number, and the theory of potential flow of an inviscid fluid can be said to rise as the Reynolds number tends to infinity. The theory given here can be described as the theory of potential flows at finite and even small Reynolds numbers |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvii, 497 pages) |
ISBN: | 9780511550928 |
DOI: | 10.1017/CBO9780511550928 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942131 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2008 |||| o||u| ||||||eng d | ||
020 | |a 9780511550928 |c Online |9 978-0-511-55092-8 | ||
024 | 7 | |a 10.1017/CBO9780511550928 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511550928 | ||
035 | |a (OCoLC)850007109 | ||
035 | |a (DE-599)BVBBV043942131 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 532/.0533 |2 22 | |
084 | |a UF 4100 |0 (DE-625)145582: |2 rvk | ||
100 | 1 | |a Joseph, Daniel D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Potential flows of viscous and viscoelastic fluids |c Daniel Joseph, Toshio Funada, Jing Wang |
246 | 1 | 3 | |a Potential Flows of Viscous & Viscoelastic Liquids |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2008 | |
300 | |a 1 online resource (xvii, 497 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge aerospace series |v 21 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Introduction -- Historical notes -- Boundary conditions for viscous fluids -- Helmholtz decomposition coupling rotational to irrotional flow -- Harmonic functions that give rise to vorticity -- Radial motions of a spherical gas bubble in a viscous liquid -- Rise velocity of a spherical cap bubble -- Ellipsoidal model of the rise of a Taylor bubble in a round tube -- Rayleigh-Taylor instability of viscous fluids -- The force on a cylinder near a wall in viscous potential flows -- Kelvin-Heimholtz instability -- Energy equation for irrotational theories of gas-liquid flow : viscous potential flow, viscous potential flow with pressure correction, and dissipation method -- Rising bubbles -- Purely irrotational theories of the effect of viscosity on the decay of waves -- Irrotational Faraday waves on a viscous fluid -- Stability of a liquid jet into incompressible gases and liquids -- Stress-induced cavitation -- Viscous effects of the irrotational flow outside boundary layers on rigid solids -- Irrotational flows that satisfy the compressible Navier-Stokes equations -- Irrotional flows of viscoelastic fluids -- Purely irrotaional theories of stability of viscoelastic fluids -- Numerical methods for irrotational flows of viscous fluid -- Equations of motion and strain rates for rotational and irrotational flow in Cartesian, cylindrical, and spherical coordinates | |
520 | |a This book illustrates how potential flows enter into the general theory of motions of viscous and viscoelastic fluids. Traditionally, the theory of potential flow is presented as a subject called 'potential flow of an inviscid fluid'; when the fluid is incompressible these fluids are, curiously, said to be 'perfect' or 'ideal'. This type of presentation is widespread; it can be found in every book on fluid mechanics, but it is flawed. It is never necessary and typically not useful to put the viscosity of fluids in potential (irrotational) flow to zero. The dimensionless description of potential flows of fluids with a nonzero viscosity depends on the Reynolds number, and the theory of potential flow of an inviscid fluid can be said to rise as the Reynolds number tends to infinity. The theory given here can be described as the theory of potential flows at finite and even small Reynolds numbers | ||
650 | 4 | |a Viscous flow | |
650 | 4 | |a Viscoelasticity | |
650 | 0 | 7 | |a Potenzialströmung |0 (DE-588)4046938-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Viskoelastische Flüssigkeit |0 (DE-588)4188410-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Viskose Strömung |0 (DE-588)4226965-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Viskose Flüssigkeit |0 (DE-588)4188412-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Viskose Flüssigkeit |0 (DE-588)4188412-7 |D s |
689 | 0 | 1 | |a Viskose Strömung |0 (DE-588)4226965-9 |D s |
689 | 0 | 2 | |a Potenzialströmung |0 (DE-588)4046938-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Viskoelastische Flüssigkeit |0 (DE-588)4188410-3 |D s |
689 | 1 | 1 | |a Potenzialströmung |0 (DE-588)4046938-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Funada, Toshio |d 1948- |e Sonstige |4 oth | |
700 | 1 | |a Wang, Jing |d 1979- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-87337-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511550928 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351101 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511550928 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511550928 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884612726784 |
---|---|
any_adam_object | |
author | Joseph, Daniel D. |
author_facet | Joseph, Daniel D. |
author_role | aut |
author_sort | Joseph, Daniel D. |
author_variant | d d j dd ddj |
building | Verbundindex |
bvnumber | BV043942131 |
classification_rvk | UF 4100 |
collection | ZDB-20-CBO |
contents | Introduction -- Historical notes -- Boundary conditions for viscous fluids -- Helmholtz decomposition coupling rotational to irrotional flow -- Harmonic functions that give rise to vorticity -- Radial motions of a spherical gas bubble in a viscous liquid -- Rise velocity of a spherical cap bubble -- Ellipsoidal model of the rise of a Taylor bubble in a round tube -- Rayleigh-Taylor instability of viscous fluids -- The force on a cylinder near a wall in viscous potential flows -- Kelvin-Heimholtz instability -- Energy equation for irrotational theories of gas-liquid flow : viscous potential flow, viscous potential flow with pressure correction, and dissipation method -- Rising bubbles -- Purely irrotational theories of the effect of viscosity on the decay of waves -- Irrotational Faraday waves on a viscous fluid -- Stability of a liquid jet into incompressible gases and liquids -- Stress-induced cavitation -- Viscous effects of the irrotational flow outside boundary layers on rigid solids -- Irrotational flows that satisfy the compressible Navier-Stokes equations -- Irrotional flows of viscoelastic fluids -- Purely irrotaional theories of stability of viscoelastic fluids -- Numerical methods for irrotational flows of viscous fluid -- Equations of motion and strain rates for rotational and irrotational flow in Cartesian, cylindrical, and spherical coordinates |
ctrlnum | (ZDB-20-CBO)CR9780511550928 (OCoLC)850007109 (DE-599)BVBBV043942131 |
dewey-full | 532/.0533 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532/.0533 |
dewey-search | 532/.0533 |
dewey-sort | 3532 3533 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1017/CBO9780511550928 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04872nmm a2200625zcb4500</leader><controlfield tag="001">BV043942131</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511550928</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-55092-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511550928</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511550928</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850007109</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942131</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532/.0533</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4100</subfield><subfield code="0">(DE-625)145582:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Joseph, Daniel D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Potential flows of viscous and viscoelastic fluids</subfield><subfield code="c">Daniel Joseph, Toshio Funada, Jing Wang</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Potential Flows of Viscous & Viscoelastic Liquids</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 497 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge aerospace series</subfield><subfield code="v">21</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction -- Historical notes -- Boundary conditions for viscous fluids -- Helmholtz decomposition coupling rotational to irrotional flow -- Harmonic functions that give rise to vorticity -- Radial motions of a spherical gas bubble in a viscous liquid -- Rise velocity of a spherical cap bubble -- Ellipsoidal model of the rise of a Taylor bubble in a round tube -- Rayleigh-Taylor instability of viscous fluids -- The force on a cylinder near a wall in viscous potential flows -- Kelvin-Heimholtz instability -- Energy equation for irrotational theories of gas-liquid flow : viscous potential flow, viscous potential flow with pressure correction, and dissipation method -- Rising bubbles -- Purely irrotational theories of the effect of viscosity on the decay of waves -- Irrotational Faraday waves on a viscous fluid -- Stability of a liquid jet into incompressible gases and liquids -- Stress-induced cavitation -- Viscous effects of the irrotational flow outside boundary layers on rigid solids -- Irrotational flows that satisfy the compressible Navier-Stokes equations -- Irrotional flows of viscoelastic fluids -- Purely irrotaional theories of stability of viscoelastic fluids -- Numerical methods for irrotational flows of viscous fluid -- Equations of motion and strain rates for rotational and irrotational flow in Cartesian, cylindrical, and spherical coordinates</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book illustrates how potential flows enter into the general theory of motions of viscous and viscoelastic fluids. Traditionally, the theory of potential flow is presented as a subject called 'potential flow of an inviscid fluid'; when the fluid is incompressible these fluids are, curiously, said to be 'perfect' or 'ideal'. This type of presentation is widespread; it can be found in every book on fluid mechanics, but it is flawed. It is never necessary and typically not useful to put the viscosity of fluids in potential (irrotational) flow to zero. The dimensionless description of potential flows of fluids with a nonzero viscosity depends on the Reynolds number, and the theory of potential flow of an inviscid fluid can be said to rise as the Reynolds number tends to infinity. The theory given here can be described as the theory of potential flows at finite and even small Reynolds numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscous flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelasticity</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Potenzialströmung</subfield><subfield code="0">(DE-588)4046938-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Viskoelastische Flüssigkeit</subfield><subfield code="0">(DE-588)4188410-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Viskose Strömung</subfield><subfield code="0">(DE-588)4226965-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Viskose Flüssigkeit</subfield><subfield code="0">(DE-588)4188412-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Viskose Flüssigkeit</subfield><subfield code="0">(DE-588)4188412-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Viskose Strömung</subfield><subfield code="0">(DE-588)4226965-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Potenzialströmung</subfield><subfield code="0">(DE-588)4046938-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Viskoelastische Flüssigkeit</subfield><subfield code="0">(DE-588)4188410-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Potenzialströmung</subfield><subfield code="0">(DE-588)4046938-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Funada, Toshio</subfield><subfield code="d">1948-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jing</subfield><subfield code="d">1979-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-87337-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511550928</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351101</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511550928</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511550928</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942131 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511550928 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351101 |
oclc_num | 850007109 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvii, 497 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge aerospace series |
spelling | Joseph, Daniel D. Verfasser aut Potential flows of viscous and viscoelastic fluids Daniel Joseph, Toshio Funada, Jing Wang Potential Flows of Viscous & Viscoelastic Liquids Cambridge Cambridge University Press 2008 1 online resource (xvii, 497 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge aerospace series 21 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Introduction -- Historical notes -- Boundary conditions for viscous fluids -- Helmholtz decomposition coupling rotational to irrotional flow -- Harmonic functions that give rise to vorticity -- Radial motions of a spherical gas bubble in a viscous liquid -- Rise velocity of a spherical cap bubble -- Ellipsoidal model of the rise of a Taylor bubble in a round tube -- Rayleigh-Taylor instability of viscous fluids -- The force on a cylinder near a wall in viscous potential flows -- Kelvin-Heimholtz instability -- Energy equation for irrotational theories of gas-liquid flow : viscous potential flow, viscous potential flow with pressure correction, and dissipation method -- Rising bubbles -- Purely irrotational theories of the effect of viscosity on the decay of waves -- Irrotational Faraday waves on a viscous fluid -- Stability of a liquid jet into incompressible gases and liquids -- Stress-induced cavitation -- Viscous effects of the irrotational flow outside boundary layers on rigid solids -- Irrotational flows that satisfy the compressible Navier-Stokes equations -- Irrotional flows of viscoelastic fluids -- Purely irrotaional theories of stability of viscoelastic fluids -- Numerical methods for irrotational flows of viscous fluid -- Equations of motion and strain rates for rotational and irrotational flow in Cartesian, cylindrical, and spherical coordinates This book illustrates how potential flows enter into the general theory of motions of viscous and viscoelastic fluids. Traditionally, the theory of potential flow is presented as a subject called 'potential flow of an inviscid fluid'; when the fluid is incompressible these fluids are, curiously, said to be 'perfect' or 'ideal'. This type of presentation is widespread; it can be found in every book on fluid mechanics, but it is flawed. It is never necessary and typically not useful to put the viscosity of fluids in potential (irrotational) flow to zero. The dimensionless description of potential flows of fluids with a nonzero viscosity depends on the Reynolds number, and the theory of potential flow of an inviscid fluid can be said to rise as the Reynolds number tends to infinity. The theory given here can be described as the theory of potential flows at finite and even small Reynolds numbers Viscous flow Viscoelasticity Potenzialströmung (DE-588)4046938-4 gnd rswk-swf Viskoelastische Flüssigkeit (DE-588)4188410-3 gnd rswk-swf Viskose Strömung (DE-588)4226965-9 gnd rswk-swf Viskose Flüssigkeit (DE-588)4188412-7 gnd rswk-swf Viskose Flüssigkeit (DE-588)4188412-7 s Viskose Strömung (DE-588)4226965-9 s Potenzialströmung (DE-588)4046938-4 s 1\p DE-604 Viskoelastische Flüssigkeit (DE-588)4188410-3 s 2\p DE-604 Funada, Toshio 1948- Sonstige oth Wang, Jing 1979- Sonstige oth Erscheint auch als Druckausgabe 978-0-521-87337-6 https://doi.org/10.1017/CBO9780511550928 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Joseph, Daniel D. Potential flows of viscous and viscoelastic fluids Introduction -- Historical notes -- Boundary conditions for viscous fluids -- Helmholtz decomposition coupling rotational to irrotional flow -- Harmonic functions that give rise to vorticity -- Radial motions of a spherical gas bubble in a viscous liquid -- Rise velocity of a spherical cap bubble -- Ellipsoidal model of the rise of a Taylor bubble in a round tube -- Rayleigh-Taylor instability of viscous fluids -- The force on a cylinder near a wall in viscous potential flows -- Kelvin-Heimholtz instability -- Energy equation for irrotational theories of gas-liquid flow : viscous potential flow, viscous potential flow with pressure correction, and dissipation method -- Rising bubbles -- Purely irrotational theories of the effect of viscosity on the decay of waves -- Irrotational Faraday waves on a viscous fluid -- Stability of a liquid jet into incompressible gases and liquids -- Stress-induced cavitation -- Viscous effects of the irrotational flow outside boundary layers on rigid solids -- Irrotational flows that satisfy the compressible Navier-Stokes equations -- Irrotional flows of viscoelastic fluids -- Purely irrotaional theories of stability of viscoelastic fluids -- Numerical methods for irrotational flows of viscous fluid -- Equations of motion and strain rates for rotational and irrotational flow in Cartesian, cylindrical, and spherical coordinates Viscous flow Viscoelasticity Potenzialströmung (DE-588)4046938-4 gnd Viskoelastische Flüssigkeit (DE-588)4188410-3 gnd Viskose Strömung (DE-588)4226965-9 gnd Viskose Flüssigkeit (DE-588)4188412-7 gnd |
subject_GND | (DE-588)4046938-4 (DE-588)4188410-3 (DE-588)4226965-9 (DE-588)4188412-7 |
title | Potential flows of viscous and viscoelastic fluids |
title_alt | Potential Flows of Viscous & Viscoelastic Liquids |
title_auth | Potential flows of viscous and viscoelastic fluids |
title_exact_search | Potential flows of viscous and viscoelastic fluids |
title_full | Potential flows of viscous and viscoelastic fluids Daniel Joseph, Toshio Funada, Jing Wang |
title_fullStr | Potential flows of viscous and viscoelastic fluids Daniel Joseph, Toshio Funada, Jing Wang |
title_full_unstemmed | Potential flows of viscous and viscoelastic fluids Daniel Joseph, Toshio Funada, Jing Wang |
title_short | Potential flows of viscous and viscoelastic fluids |
title_sort | potential flows of viscous and viscoelastic fluids |
topic | Viscous flow Viscoelasticity Potenzialströmung (DE-588)4046938-4 gnd Viskoelastische Flüssigkeit (DE-588)4188410-3 gnd Viskose Strömung (DE-588)4226965-9 gnd Viskose Flüssigkeit (DE-588)4188412-7 gnd |
topic_facet | Viscous flow Viscoelasticity Potenzialströmung Viskoelastische Flüssigkeit Viskose Strömung Viskose Flüssigkeit |
url | https://doi.org/10.1017/CBO9780511550928 |
work_keys_str_mv | AT josephdanield potentialflowsofviscousandviscoelasticfluids AT funadatoshio potentialflowsofviscousandviscoelasticfluids AT wangjing potentialflowsofviscousandviscoelasticfluids AT josephdanield potentialflowsofviscousviscoelasticliquids AT funadatoshio potentialflowsofviscousviscoelasticliquids AT wangjing potentialflowsofviscousviscoelasticliquids |