Low rank representations and graphs for sporadic groups:
This book presents a complete classification of the transitive permutation representations of rank at most five of the sporadic simple groups and their automorphism groups, together with a comprehensive study of the vertex-transitive graphs associated with these representations. Included is a list o...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1997
|
Schriftenreihe: | Australian Mathematical Society lecture series
8 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | This book presents a complete classification of the transitive permutation representations of rank at most five of the sporadic simple groups and their automorphism groups, together with a comprehensive study of the vertex-transitive graphs associated with these representations. Included is a list of all vertex-transitive, distance-regular graphs on which a sporadic almost simple group acts with rank at most five. In this list are some new, interesting distance-regular graphs of diameter two, which are not distance-transitive. For most of the representations a presentation of the sporadic group is given, with words in the given generators which generate a point stabiliser: this gives readers sufficient information to reconstruct and study the representations and graphs. Practical computational techniques appropriate for analysing finite vertex-transitive graphs are described carefully, making the book an excellent starting point for learning about groups and the graphs on which they act |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 141 pages) |
ISBN: | 9780511526039 |
DOI: | 10.1017/CBO9780511526039 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942108 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1997 |||| o||u| ||||||eng d | ||
020 | |a 9780511526039 |c Online |9 978-0-511-52603-9 | ||
024 | 7 | |a 10.1017/CBO9780511526039 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511526039 | ||
035 | |a (OCoLC)849905623 | ||
035 | |a (DE-599)BVBBV043942108 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.2 |2 20 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Praeger, Cheryl E. |d 1948- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Low rank representations and graphs for sporadic groups |c Cheryl E. Praeger, Leonard H. Soicher |
246 | 1 | 3 | |a Low Rank Representations & Graphs for Sporadic Groups |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1997 | |
300 | |a 1 online resource (xi, 141 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Australian Mathematical Society lecture series |v 8 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book presents a complete classification of the transitive permutation representations of rank at most five of the sporadic simple groups and their automorphism groups, together with a comprehensive study of the vertex-transitive graphs associated with these representations. Included is a list of all vertex-transitive, distance-regular graphs on which a sporadic almost simple group acts with rank at most five. In this list are some new, interesting distance-regular graphs of diameter two, which are not distance-transitive. For most of the representations a presentation of the sporadic group is given, with words in the given generators which generate a point stabiliser: this gives readers sufficient information to reconstruct and study the representations and graphs. Practical computational techniques appropriate for analysing finite vertex-transitive graphs are described carefully, making the book an excellent starting point for learning about groups and the graphs on which they act | ||
650 | 4 | |a Finite simple groups | |
650 | 4 | |a Representations of groups | |
650 | 4 | |a Graph theory | |
650 | 0 | 7 | |a Sporadische Gruppe |0 (DE-588)4389412-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Klassifikation |0 (DE-588)4030958-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Rang 5 |0 (DE-588)4467264-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Transitive Gruppe |0 (DE-588)4185903-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Permutationsgruppe |0 (DE-588)4173833-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sporadische Gruppe |0 (DE-588)4389412-4 |D s |
689 | 0 | 1 | |a Klassifikation |0 (DE-588)4030958-7 |D s |
689 | 0 | 2 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |D s |
689 | 0 | 3 | |a Permutationsgruppe |0 (DE-588)4173833-0 |D s |
689 | 0 | 4 | |a Transitive Gruppe |0 (DE-588)4185903-0 |D s |
689 | 0 | 5 | |a Rang 5 |0 (DE-588)4467264-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Soicher, Leonard H. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-56737-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511526039 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351078 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511526039 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511526039 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884570783744 |
---|---|
any_adam_object | |
author | Praeger, Cheryl E. 1948- |
author_facet | Praeger, Cheryl E. 1948- |
author_role | aut |
author_sort | Praeger, Cheryl E. 1948- |
author_variant | c e p ce cep |
building | Verbundindex |
bvnumber | BV043942108 |
classification_rvk | SK 260 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511526039 (OCoLC)849905623 (DE-599)BVBBV043942108 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511526039 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03632nmm a2200625zcb4500</leader><controlfield tag="001">BV043942108</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526039</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-52603-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511526039</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511526039</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849905623</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942108</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Praeger, Cheryl E.</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low rank representations and graphs for sporadic groups</subfield><subfield code="c">Cheryl E. Praeger, Leonard H. Soicher</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Low Rank Representations & Graphs for Sporadic Groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 141 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Australian Mathematical Society lecture series</subfield><subfield code="v">8</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents a complete classification of the transitive permutation representations of rank at most five of the sporadic simple groups and their automorphism groups, together with a comprehensive study of the vertex-transitive graphs associated with these representations. Included is a list of all vertex-transitive, distance-regular graphs on which a sporadic almost simple group acts with rank at most five. In this list are some new, interesting distance-regular graphs of diameter two, which are not distance-transitive. For most of the representations a presentation of the sporadic group is given, with words in the given generators which generate a point stabiliser: this gives readers sufficient information to reconstruct and study the representations and graphs. Practical computational techniques appropriate for analysing finite vertex-transitive graphs are described carefully, making the book an excellent starting point for learning about groups and the graphs on which they act</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite simple groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sporadische Gruppe</subfield><subfield code="0">(DE-588)4389412-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Klassifikation</subfield><subfield code="0">(DE-588)4030958-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rang 5</subfield><subfield code="0">(DE-588)4467264-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transitive Gruppe</subfield><subfield code="0">(DE-588)4185903-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Permutationsgruppe</subfield><subfield code="0">(DE-588)4173833-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sporadische Gruppe</subfield><subfield code="0">(DE-588)4389412-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Klassifikation</subfield><subfield code="0">(DE-588)4030958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Permutationsgruppe</subfield><subfield code="0">(DE-588)4173833-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Transitive Gruppe</subfield><subfield code="0">(DE-588)4185903-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Rang 5</subfield><subfield code="0">(DE-588)4467264-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Soicher, Leonard H.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-56737-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511526039</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351078</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526039</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526039</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942108 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511526039 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351078 |
oclc_num | 849905623 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xi, 141 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Australian Mathematical Society lecture series |
spelling | Praeger, Cheryl E. 1948- Verfasser aut Low rank representations and graphs for sporadic groups Cheryl E. Praeger, Leonard H. Soicher Low Rank Representations & Graphs for Sporadic Groups Cambridge Cambridge University Press 1997 1 online resource (xi, 141 pages) txt rdacontent c rdamedia cr rdacarrier Australian Mathematical Society lecture series 8 Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book presents a complete classification of the transitive permutation representations of rank at most five of the sporadic simple groups and their automorphism groups, together with a comprehensive study of the vertex-transitive graphs associated with these representations. Included is a list of all vertex-transitive, distance-regular graphs on which a sporadic almost simple group acts with rank at most five. In this list are some new, interesting distance-regular graphs of diameter two, which are not distance-transitive. For most of the representations a presentation of the sporadic group is given, with words in the given generators which generate a point stabiliser: this gives readers sufficient information to reconstruct and study the representations and graphs. Practical computational techniques appropriate for analysing finite vertex-transitive graphs are described carefully, making the book an excellent starting point for learning about groups and the graphs on which they act Finite simple groups Representations of groups Graph theory Sporadische Gruppe (DE-588)4389412-4 gnd rswk-swf Klassifikation (DE-588)4030958-7 gnd rswk-swf Darstellung Mathematik (DE-588)4128289-9 gnd rswk-swf Rang 5 (DE-588)4467264-0 gnd rswk-swf Transitive Gruppe (DE-588)4185903-0 gnd rswk-swf Permutationsgruppe (DE-588)4173833-0 gnd rswk-swf Sporadische Gruppe (DE-588)4389412-4 s Klassifikation (DE-588)4030958-7 s Darstellung Mathematik (DE-588)4128289-9 s Permutationsgruppe (DE-588)4173833-0 s Transitive Gruppe (DE-588)4185903-0 s Rang 5 (DE-588)4467264-0 s 1\p DE-604 Soicher, Leonard H. Sonstige oth Erscheint auch als Druckausgabe 978-0-521-56737-4 https://doi.org/10.1017/CBO9780511526039 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Praeger, Cheryl E. 1948- Low rank representations and graphs for sporadic groups Finite simple groups Representations of groups Graph theory Sporadische Gruppe (DE-588)4389412-4 gnd Klassifikation (DE-588)4030958-7 gnd Darstellung Mathematik (DE-588)4128289-9 gnd Rang 5 (DE-588)4467264-0 gnd Transitive Gruppe (DE-588)4185903-0 gnd Permutationsgruppe (DE-588)4173833-0 gnd |
subject_GND | (DE-588)4389412-4 (DE-588)4030958-7 (DE-588)4128289-9 (DE-588)4467264-0 (DE-588)4185903-0 (DE-588)4173833-0 |
title | Low rank representations and graphs for sporadic groups |
title_alt | Low Rank Representations & Graphs for Sporadic Groups |
title_auth | Low rank representations and graphs for sporadic groups |
title_exact_search | Low rank representations and graphs for sporadic groups |
title_full | Low rank representations and graphs for sporadic groups Cheryl E. Praeger, Leonard H. Soicher |
title_fullStr | Low rank representations and graphs for sporadic groups Cheryl E. Praeger, Leonard H. Soicher |
title_full_unstemmed | Low rank representations and graphs for sporadic groups Cheryl E. Praeger, Leonard H. Soicher |
title_short | Low rank representations and graphs for sporadic groups |
title_sort | low rank representations and graphs for sporadic groups |
topic | Finite simple groups Representations of groups Graph theory Sporadische Gruppe (DE-588)4389412-4 gnd Klassifikation (DE-588)4030958-7 gnd Darstellung Mathematik (DE-588)4128289-9 gnd Rang 5 (DE-588)4467264-0 gnd Transitive Gruppe (DE-588)4185903-0 gnd Permutationsgruppe (DE-588)4173833-0 gnd |
topic_facet | Finite simple groups Representations of groups Graph theory Sporadische Gruppe Klassifikation Darstellung Mathematik Rang 5 Transitive Gruppe Permutationsgruppe |
url | https://doi.org/10.1017/CBO9780511526039 |
work_keys_str_mv | AT praegercheryle lowrankrepresentationsandgraphsforsporadicgroups AT soicherleonardh lowrankrepresentationsandgraphsforsporadicgroups AT praegercheryle lowrankrepresentationsgraphsforsporadicgroups AT soicherleonardh lowrankrepresentationsgraphsforsporadicgroups |