Homogeneous structures on Riemannian manifolds:
The central theme of this book is the theorem of Ambrose and Singer, which gives for a connected, complete and simply connected Riemannian manifold a necessary and sufficient condition for it to be homogeneous. This is a local condition which has to be satisfied at all points, and in this way it is...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1983
|
Schriftenreihe: | London Mathematical Society lecture note series
83 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The central theme of this book is the theorem of Ambrose and Singer, which gives for a connected, complete and simply connected Riemannian manifold a necessary and sufficient condition for it to be homogeneous. This is a local condition which has to be satisfied at all points, and in this way it is a generalization of E. Cartan's method for symmetric spaces. The main aim of the authors is to use this theorem and representation theory to give a classification of homogeneous Riemannian structures on a manifold. There are eight classes, and some of these are discussed in detail. Using the constructive proof of Ambrose and Singer many examples are discussed with special attention to the natural correspondence between the homogeneous structure and the groups acting transitively and effectively as isometrics on the manifold |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (v, 125 pages) |
ISBN: | 9781107325531 |
DOI: | 10.1017/CBO9781107325531 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942090 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1983 |||| o||u| ||||||eng d | ||
020 | |a 9781107325531 |c Online |9 978-1-107-32553-1 | ||
024 | 7 | |a 10.1017/CBO9781107325531 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107325531 | ||
035 | |a (OCoLC)967683818 | ||
035 | |a (DE-599)BVBBV043942090 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 514/.74 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Tricerri, F. |d 1947- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Homogeneous structures on Riemannian manifolds |c F. Tricerri, L. Vanhecke |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1983 | |
300 | |a 1 online resource (v, 125 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 83 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a The central theme of this book is the theorem of Ambrose and Singer, which gives for a connected, complete and simply connected Riemannian manifold a necessary and sufficient condition for it to be homogeneous. This is a local condition which has to be satisfied at all points, and in this way it is a generalization of E. Cartan's method for symmetric spaces. The main aim of the authors is to use this theorem and representation theory to give a classification of homogeneous Riemannian structures on a manifold. There are eight classes, and some of these are discussed in detail. Using the constructive proof of Ambrose and Singer many examples are discussed with special attention to the natural correspondence between the homogeneous structure and the groups acting transitively and effectively as isometrics on the manifold | ||
650 | 4 | |a Riemannian manifolds | |
650 | 0 | 7 | |a Riemannscher Raum |0 (DE-588)4128295-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannscher Raum |0 (DE-588)4128295-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Vanhecke, L. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-27489-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781107325531 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351060 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781107325531 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107325531 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884535132160 |
---|---|
any_adam_object | |
author | Tricerri, F. 1947- |
author_facet | Tricerri, F. 1947- |
author_role | aut |
author_sort | Tricerri, F. 1947- |
author_variant | f t ft |
building | Verbundindex |
bvnumber | BV043942090 |
classification_rvk | SI 320 SK 370 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781107325531 (OCoLC)967683818 (DE-599)BVBBV043942090 |
dewey-full | 514/.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.74 |
dewey-search | 514/.74 |
dewey-sort | 3514 274 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781107325531 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02726nmm a2200481zcb4500</leader><controlfield tag="001">BV043942090</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1983 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107325531</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-107-32553-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781107325531</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107325531</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967683818</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942090</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.74</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tricerri, F.</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Homogeneous structures on Riemannian manifolds</subfield><subfield code="c">F. Tricerri, L. Vanhecke</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (v, 125 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">83</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The central theme of this book is the theorem of Ambrose and Singer, which gives for a connected, complete and simply connected Riemannian manifold a necessary and sufficient condition for it to be homogeneous. This is a local condition which has to be satisfied at all points, and in this way it is a generalization of E. Cartan's method for symmetric spaces. The main aim of the authors is to use this theorem and representation theory to give a classification of homogeneous Riemannian structures on a manifold. There are eight classes, and some of these are discussed in detail. Using the constructive proof of Ambrose and Singer many examples are discussed with special attention to the natural correspondence between the homogeneous structure and the groups acting transitively and effectively as isometrics on the manifold</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemannian manifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vanhecke, L.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-27489-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781107325531</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351060</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107325531</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107325531</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942090 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9781107325531 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351060 |
oclc_num | 967683818 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (v, 125 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Tricerri, F. 1947- Verfasser aut Homogeneous structures on Riemannian manifolds F. Tricerri, L. Vanhecke Cambridge Cambridge University Press 1983 1 online resource (v, 125 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 83 Title from publisher's bibliographic system (viewed on 05 Oct 2015) The central theme of this book is the theorem of Ambrose and Singer, which gives for a connected, complete and simply connected Riemannian manifold a necessary and sufficient condition for it to be homogeneous. This is a local condition which has to be satisfied at all points, and in this way it is a generalization of E. Cartan's method for symmetric spaces. The main aim of the authors is to use this theorem and representation theory to give a classification of homogeneous Riemannian structures on a manifold. There are eight classes, and some of these are discussed in detail. Using the constructive proof of Ambrose and Singer many examples are discussed with special attention to the natural correspondence between the homogeneous structure and the groups acting transitively and effectively as isometrics on the manifold Riemannian manifolds Riemannscher Raum (DE-588)4128295-4 gnd rswk-swf Riemannscher Raum (DE-588)4128295-4 s 1\p DE-604 Vanhecke, L. Sonstige oth Erscheint auch als Druckausgabe 978-0-521-27489-0 https://doi.org/10.1017/CBO9781107325531 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Tricerri, F. 1947- Homogeneous structures on Riemannian manifolds Riemannian manifolds Riemannscher Raum (DE-588)4128295-4 gnd |
subject_GND | (DE-588)4128295-4 |
title | Homogeneous structures on Riemannian manifolds |
title_auth | Homogeneous structures on Riemannian manifolds |
title_exact_search | Homogeneous structures on Riemannian manifolds |
title_full | Homogeneous structures on Riemannian manifolds F. Tricerri, L. Vanhecke |
title_fullStr | Homogeneous structures on Riemannian manifolds F. Tricerri, L. Vanhecke |
title_full_unstemmed | Homogeneous structures on Riemannian manifolds F. Tricerri, L. Vanhecke |
title_short | Homogeneous structures on Riemannian manifolds |
title_sort | homogeneous structures on riemannian manifolds |
topic | Riemannian manifolds Riemannscher Raum (DE-588)4128295-4 gnd |
topic_facet | Riemannian manifolds Riemannscher Raum |
url | https://doi.org/10.1017/CBO9781107325531 |
work_keys_str_mv | AT tricerrif homogeneousstructuresonriemannianmanifolds AT vanheckel homogeneousstructuresonriemannianmanifolds |