Regular variation:
This book is a comprehensive account of the theory and applications of regular variation. It is concerned with the asymptotic behaviour of a real function of a real variable x which is 'close' to a power of x. Such functions are much more than a convenient extension of powers. In many limi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1987
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 27 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book is a comprehensive account of the theory and applications of regular variation. It is concerned with the asymptotic behaviour of a real function of a real variable x which is 'close' to a power of x. Such functions are much more than a convenient extension of powers. In many limit theorems regular variation is intrinsic to the result, and exactly characterises the limit behaviour. The book emphasises such characterisations, and gives a comprehensive treatment of those applications where regular variation plays an essential (rather then merely convenient) role. The authors rigorously develop the basic ideas of Karamata theory and de Haan theory including many new results and 'second-order' theorems. They go on to discuss the role of regular variation in Abelian, Tauberian, and Mercerian theorems. These results are then applied in analytic number theory, complex analysis, and probability, with the aim above all of setting the theory in context. A widely scattered literature is thus brought together in a unified approach. With several appendices and a comprehensive list of references, analysts, number theorists, and probabilists will find this an invaluable and complete account of regular variation. It will provide a rigorous and authoritative introduction to the subject for research students in these fields |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xix, 491 pages) |
ISBN: | 9780511721434 |
DOI: | 10.1017/CBO9780511721434 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942078 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1987 |||| o||u| ||||||eng d | ||
020 | |a 9780511721434 |c Online |9 978-0-511-72143-4 | ||
024 | 7 | |a 10.1017/CBO9780511721434 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511721434 | ||
035 | |a (OCoLC)967776251 | ||
035 | |a (DE-599)BVBBV043942078 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515.8 |2 19eng | |
084 | |a SK 420 |0 (DE-625)143238: |2 rvk | ||
084 | |a SK 660 |0 (DE-625)143251: |2 rvk | ||
100 | 1 | |a Bingham, N. H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Regular variation |c N.H. Bingham, C.M. Goldie, J.L. Teugels |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1987 | |
300 | |a 1 online resource (xix, 491 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 27 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Karamata theory -- Further Karamata theory -- De Haan theory -- Abelian and Tauberian theorems -- Mercerian theorems -- Applications to analytic number theory -- Applications to complex analysis -- Applications to probability theory -- Appendices | |
520 | |a This book is a comprehensive account of the theory and applications of regular variation. It is concerned with the asymptotic behaviour of a real function of a real variable x which is 'close' to a power of x. Such functions are much more than a convenient extension of powers. In many limit theorems regular variation is intrinsic to the result, and exactly characterises the limit behaviour. The book emphasises such characterisations, and gives a comprehensive treatment of those applications where regular variation plays an essential (rather then merely convenient) role. The authors rigorously develop the basic ideas of Karamata theory and de Haan theory including many new results and 'second-order' theorems. They go on to discuss the role of regular variation in Abelian, Tauberian, and Mercerian theorems. These results are then applied in analytic number theory, complex analysis, and probability, with the aim above all of setting the theory in context. A widely scattered literature is thus brought together in a unified approach. With several appendices and a comprehensive list of references, analysts, number theorists, and probabilists will find this an invaluable and complete account of regular variation. It will provide a rigorous and authoritative introduction to the subject for research students in these fields | ||
650 | 4 | |a Functions of real variables | |
650 | 4 | |a Calculus | |
650 | 0 | 7 | |a Reguläres Variationsproblem |0 (DE-588)4401284-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reguläres Variationsproblem |0 (DE-588)4401284-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Goldie, Charles M. |e Sonstige |4 oth | |
700 | 1 | |a Teugels, Jef L. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-30787-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-37943-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511721434 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351048 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511721434 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511721434 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884521500672 |
---|---|
any_adam_object | |
author | Bingham, N. H. |
author_facet | Bingham, N. H. |
author_role | aut |
author_sort | Bingham, N. H. |
author_variant | n h b nh nhb |
building | Verbundindex |
bvnumber | BV043942078 |
classification_rvk | SK 420 SK 660 |
collection | ZDB-20-CBO |
contents | Karamata theory -- Further Karamata theory -- De Haan theory -- Abelian and Tauberian theorems -- Mercerian theorems -- Applications to analytic number theory -- Applications to complex analysis -- Applications to probability theory -- Appendices |
ctrlnum | (ZDB-20-CBO)CR9780511721434 (OCoLC)967776251 (DE-599)BVBBV043942078 |
dewey-full | 515.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.8 |
dewey-search | 515.8 |
dewey-sort | 3515.8 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511721434 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03660nmm a2200529zcb4500</leader><controlfield tag="001">BV043942078</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511721434</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-72143-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511721434</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511721434</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967776251</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942078</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.8</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 420</subfield><subfield code="0">(DE-625)143238:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 660</subfield><subfield code="0">(DE-625)143251:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bingham, N. H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regular variation</subfield><subfield code="c">N.H. Bingham, C.M. Goldie, J.L. Teugels</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xix, 491 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 27</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Karamata theory -- Further Karamata theory -- De Haan theory -- Abelian and Tauberian theorems -- Mercerian theorems -- Applications to analytic number theory -- Applications to complex analysis -- Applications to probability theory -- Appendices</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is a comprehensive account of the theory and applications of regular variation. It is concerned with the asymptotic behaviour of a real function of a real variable x which is 'close' to a power of x. Such functions are much more than a convenient extension of powers. In many limit theorems regular variation is intrinsic to the result, and exactly characterises the limit behaviour. The book emphasises such characterisations, and gives a comprehensive treatment of those applications where regular variation plays an essential (rather then merely convenient) role. The authors rigorously develop the basic ideas of Karamata theory and de Haan theory including many new results and 'second-order' theorems. They go on to discuss the role of regular variation in Abelian, Tauberian, and Mercerian theorems. These results are then applied in analytic number theory, complex analysis, and probability, with the aim above all of setting the theory in context. A widely scattered literature is thus brought together in a unified approach. With several appendices and a comprehensive list of references, analysts, number theorists, and probabilists will find this an invaluable and complete account of regular variation. It will provide a rigorous and authoritative introduction to the subject for research students in these fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of real variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reguläres Variationsproblem</subfield><subfield code="0">(DE-588)4401284-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reguläres Variationsproblem</subfield><subfield code="0">(DE-588)4401284-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goldie, Charles M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teugels, Jef L.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-30787-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-37943-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511721434</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351048</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721434</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721434</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942078 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511721434 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351048 |
oclc_num | 967776251 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xix, 491 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Bingham, N. H. Verfasser aut Regular variation N.H. Bingham, C.M. Goldie, J.L. Teugels Cambridge Cambridge University Press 1987 1 online resource (xix, 491 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 27 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Karamata theory -- Further Karamata theory -- De Haan theory -- Abelian and Tauberian theorems -- Mercerian theorems -- Applications to analytic number theory -- Applications to complex analysis -- Applications to probability theory -- Appendices This book is a comprehensive account of the theory and applications of regular variation. It is concerned with the asymptotic behaviour of a real function of a real variable x which is 'close' to a power of x. Such functions are much more than a convenient extension of powers. In many limit theorems regular variation is intrinsic to the result, and exactly characterises the limit behaviour. The book emphasises such characterisations, and gives a comprehensive treatment of those applications where regular variation plays an essential (rather then merely convenient) role. The authors rigorously develop the basic ideas of Karamata theory and de Haan theory including many new results and 'second-order' theorems. They go on to discuss the role of regular variation in Abelian, Tauberian, and Mercerian theorems. These results are then applied in analytic number theory, complex analysis, and probability, with the aim above all of setting the theory in context. A widely scattered literature is thus brought together in a unified approach. With several appendices and a comprehensive list of references, analysts, number theorists, and probabilists will find this an invaluable and complete account of regular variation. It will provide a rigorous and authoritative introduction to the subject for research students in these fields Functions of real variables Calculus Reguläres Variationsproblem (DE-588)4401284-6 gnd rswk-swf Reguläres Variationsproblem (DE-588)4401284-6 s 1\p DE-604 Goldie, Charles M. Sonstige oth Teugels, Jef L. Sonstige oth Erscheint auch als Druckausgabe 978-0-521-30787-1 Erscheint auch als Druckausgabe 978-0-521-37943-4 https://doi.org/10.1017/CBO9780511721434 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bingham, N. H. Regular variation Karamata theory -- Further Karamata theory -- De Haan theory -- Abelian and Tauberian theorems -- Mercerian theorems -- Applications to analytic number theory -- Applications to complex analysis -- Applications to probability theory -- Appendices Functions of real variables Calculus Reguläres Variationsproblem (DE-588)4401284-6 gnd |
subject_GND | (DE-588)4401284-6 |
title | Regular variation |
title_auth | Regular variation |
title_exact_search | Regular variation |
title_full | Regular variation N.H. Bingham, C.M. Goldie, J.L. Teugels |
title_fullStr | Regular variation N.H. Bingham, C.M. Goldie, J.L. Teugels |
title_full_unstemmed | Regular variation N.H. Bingham, C.M. Goldie, J.L. Teugels |
title_short | Regular variation |
title_sort | regular variation |
topic | Functions of real variables Calculus Reguläres Variationsproblem (DE-588)4401284-6 gnd |
topic_facet | Functions of real variables Calculus Reguläres Variationsproblem |
url | https://doi.org/10.1017/CBO9780511721434 |
work_keys_str_mv | AT binghamnh regularvariation AT goldiecharlesm regularvariation AT teugelsjefl regularvariation |