Stochastic integration with jumps:
Stochastic processes with jumps and random measures are importance as drivers in applications like financial mathematics and signal processing. This 2002 text develops stochastic integration theory for both integrators (semimartingales) and random measures from a common point of view. Using some nov...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2002
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 89 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Stochastic processes with jumps and random measures are importance as drivers in applications like financial mathematics and signal processing. This 2002 text develops stochastic integration theory for both integrators (semimartingales) and random measures from a common point of view. Using some novel predictable controlling devices, the author furnishes the theory of stochastic differential equations driven by them, as well as their stability and numerical approximation theories. Highlights feature DCT and Egoroff's Theorem, as well as comprehensive analogs results from ordinary integration theory, for instance previsible envelopes and an algorithm computing stochastic integrals of càglàd integrands pathwise. Full proofs are given for all results, and motivation is stressed throughout. A large appendix contains most of the analysis that readers will need as a prerequisite. This will be an invaluable reference for graduate students and researchers in mathematics, physics, electrical engineering and finance who need to use stochastic differential equations |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiii, 501 pages) |
ISBN: | 9780511549878 |
DOI: | 10.1017/CBO9780511549878 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942046 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780511549878 |c Online |9 978-0-511-54987-8 | ||
024 | 7 | |a 10.1017/CBO9780511549878 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511549878 | ||
035 | |a (OCoLC)849900810 | ||
035 | |a (DE-599)BVBBV043942046 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 519.2 |2 21 | |
084 | |a SK 430 |0 (DE-625)143239: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
100 | 1 | |a Bichteler, Klaus |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stochastic integration with jumps |c Klaus Bichteler |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2002 | |
300 | |a 1 online resource (xiii, 501 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 89 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |t Motivation: Stochastic Differential Equations |t Wiener Process |t The General Model |t Integrators and Martingales |t The Elementary Stochastic Integral |t The Semivariations |t Path Regularity of Integrators |t Processes of Finite Variation |t Martingales |t Extension of the Integral |t The Daniell Mean |t The Integration Theory of a Mean |t Countable Additivity in p-Mean |t Measurability |t Predictable and Previsible Processes |t Special Properties of Daniell's Mean |t The Indefinite Integral |t Functions of Integrators |t Ito's Formula |t Random Measures |t Control of Integral and Integrator |t Change of Measure--Factorization |t Martingale Inequalities |t The Doob-Meyer Decomposition |t Semimartingales |t Previsible Control of Integrators |t Levy Processes |t Stochastic Differential Equations |t Existence and Uniqueness of the Solution |t Stability: Differentiability in Parameters |t Pathwise Computation of the Solution |t Weak Solutions |t Stochastic Flows |t Semigroups, Markov Processes, and PDE |t Complements to Topology and Measure Theory |t Notations and Conventions |t Topological Miscellanea |t Measure and Integration |t Weak Convergence of Measures |t Analytic Sets and Capacity |t Suslin Spaces and Tightness of Measures |t The Skorohod Topology |t The L[superscript p]-Spaces |t Semigroups of Operators |
520 | |a Stochastic processes with jumps and random measures are importance as drivers in applications like financial mathematics and signal processing. This 2002 text develops stochastic integration theory for both integrators (semimartingales) and random measures from a common point of view. Using some novel predictable controlling devices, the author furnishes the theory of stochastic differential equations driven by them, as well as their stability and numerical approximation theories. Highlights feature DCT and Egoroff's Theorem, as well as comprehensive analogs results from ordinary integration theory, for instance previsible envelopes and an algorithm computing stochastic integrals of càglàd integrands pathwise. Full proofs are given for all results, and motivation is stressed throughout. A large appendix contains most of the analysis that readers will need as a prerequisite. This will be an invaluable reference for graduate students and researchers in mathematics, physics, electrical engineering and finance who need to use stochastic differential equations | ||
650 | 4 | |a Stochastic integrals | |
650 | 4 | |a Jump processes | |
650 | 0 | 7 | |a Stochastisches Integral |0 (DE-588)4126478-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastisches Integral |0 (DE-588)4126478-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-14214-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-81129-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511549878 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351016 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511549878 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511549878 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884453343232 |
---|---|
any_adam_object | |
author | Bichteler, Klaus |
author_facet | Bichteler, Klaus |
author_role | aut |
author_sort | Bichteler, Klaus |
author_variant | k b kb |
building | Verbundindex |
bvnumber | BV043942046 |
classification_rvk | SK 430 SK 820 |
collection | ZDB-20-CBO |
contents | Motivation: Stochastic Differential Equations Wiener Process The General Model Integrators and Martingales The Elementary Stochastic Integral The Semivariations Path Regularity of Integrators Processes of Finite Variation Martingales Extension of the Integral The Daniell Mean The Integration Theory of a Mean Countable Additivity in p-Mean Measurability Predictable and Previsible Processes Special Properties of Daniell's Mean The Indefinite Integral Functions of Integrators Ito's Formula Random Measures Control of Integral and Integrator Change of Measure--Factorization Martingale Inequalities The Doob-Meyer Decomposition Semimartingales Previsible Control of Integrators Levy Processes Stochastic Differential Equations Existence and Uniqueness of the Solution Stability: Differentiability in Parameters Pathwise Computation of the Solution Weak Solutions Stochastic Flows Semigroups, Markov Processes, and PDE Complements to Topology and Measure Theory Notations and Conventions Topological Miscellanea Measure and Integration Weak Convergence of Measures Analytic Sets and Capacity Suslin Spaces and Tightness of Measures The Skorohod Topology The L[superscript p]-Spaces Semigroups of Operators |
ctrlnum | (ZDB-20-CBO)CR9780511549878 (OCoLC)849900810 (DE-599)BVBBV043942046 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511549878 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04283nmm a2200505zcb4500</leader><controlfield tag="001">BV043942046</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511549878</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54987-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511549878</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511549878</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849900810</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942046</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 430</subfield><subfield code="0">(DE-625)143239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bichteler, Klaus</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic integration with jumps</subfield><subfield code="c">Klaus Bichteler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 501 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 89</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Motivation: Stochastic Differential Equations</subfield><subfield code="t">Wiener Process</subfield><subfield code="t">The General Model</subfield><subfield code="t">Integrators and Martingales</subfield><subfield code="t">The Elementary Stochastic Integral</subfield><subfield code="t">The Semivariations</subfield><subfield code="t">Path Regularity of Integrators</subfield><subfield code="t">Processes of Finite Variation</subfield><subfield code="t">Martingales</subfield><subfield code="t">Extension of the Integral</subfield><subfield code="t">The Daniell Mean</subfield><subfield code="t">The Integration Theory of a Mean</subfield><subfield code="t">Countable Additivity in p-Mean</subfield><subfield code="t">Measurability</subfield><subfield code="t">Predictable and Previsible Processes</subfield><subfield code="t">Special Properties of Daniell's Mean</subfield><subfield code="t">The Indefinite Integral</subfield><subfield code="t">Functions of Integrators</subfield><subfield code="t">Ito's Formula</subfield><subfield code="t">Random Measures</subfield><subfield code="t">Control of Integral and Integrator</subfield><subfield code="t">Change of Measure--Factorization</subfield><subfield code="t">Martingale Inequalities</subfield><subfield code="t">The Doob-Meyer Decomposition</subfield><subfield code="t">Semimartingales</subfield><subfield code="t">Previsible Control of Integrators</subfield><subfield code="t">Levy Processes</subfield><subfield code="t">Stochastic Differential Equations</subfield><subfield code="t">Existence and Uniqueness of the Solution</subfield><subfield code="t">Stability: Differentiability in Parameters</subfield><subfield code="t">Pathwise Computation of the Solution</subfield><subfield code="t">Weak Solutions</subfield><subfield code="t">Stochastic Flows</subfield><subfield code="t">Semigroups, Markov Processes, and PDE</subfield><subfield code="t">Complements to Topology and Measure Theory</subfield><subfield code="t">Notations and Conventions</subfield><subfield code="t">Topological Miscellanea</subfield><subfield code="t">Measure and Integration</subfield><subfield code="t">Weak Convergence of Measures</subfield><subfield code="t">Analytic Sets and Capacity</subfield><subfield code="t">Suslin Spaces and Tightness of Measures</subfield><subfield code="t">The Skorohod Topology</subfield><subfield code="t">The L[superscript p]-Spaces</subfield><subfield code="t">Semigroups of Operators</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Stochastic processes with jumps and random measures are importance as drivers in applications like financial mathematics and signal processing. This 2002 text develops stochastic integration theory for both integrators (semimartingales) and random measures from a common point of view. Using some novel predictable controlling devices, the author furnishes the theory of stochastic differential equations driven by them, as well as their stability and numerical approximation theories. Highlights feature DCT and Egoroff's Theorem, as well as comprehensive analogs results from ordinary integration theory, for instance previsible envelopes and an algorithm computing stochastic integrals of càglàd integrands pathwise. Full proofs are given for all results, and motivation is stressed throughout. A large appendix contains most of the analysis that readers will need as a prerequisite. This will be an invaluable reference for graduate students and researchers in mathematics, physics, electrical engineering and finance who need to use stochastic differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic integrals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jump processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Integral</subfield><subfield code="0">(DE-588)4126478-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastisches Integral</subfield><subfield code="0">(DE-588)4126478-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-14214-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-81129-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511549878</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351016</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511549878</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511549878</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942046 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511549878 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351016 |
oclc_num | 849900810 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 501 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Bichteler, Klaus Verfasser aut Stochastic integration with jumps Klaus Bichteler Cambridge Cambridge University Press 2002 1 online resource (xiii, 501 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 89 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Motivation: Stochastic Differential Equations Wiener Process The General Model Integrators and Martingales The Elementary Stochastic Integral The Semivariations Path Regularity of Integrators Processes of Finite Variation Martingales Extension of the Integral The Daniell Mean The Integration Theory of a Mean Countable Additivity in p-Mean Measurability Predictable and Previsible Processes Special Properties of Daniell's Mean The Indefinite Integral Functions of Integrators Ito's Formula Random Measures Control of Integral and Integrator Change of Measure--Factorization Martingale Inequalities The Doob-Meyer Decomposition Semimartingales Previsible Control of Integrators Levy Processes Stochastic Differential Equations Existence and Uniqueness of the Solution Stability: Differentiability in Parameters Pathwise Computation of the Solution Weak Solutions Stochastic Flows Semigroups, Markov Processes, and PDE Complements to Topology and Measure Theory Notations and Conventions Topological Miscellanea Measure and Integration Weak Convergence of Measures Analytic Sets and Capacity Suslin Spaces and Tightness of Measures The Skorohod Topology The L[superscript p]-Spaces Semigroups of Operators Stochastic processes with jumps and random measures are importance as drivers in applications like financial mathematics and signal processing. This 2002 text develops stochastic integration theory for both integrators (semimartingales) and random measures from a common point of view. Using some novel predictable controlling devices, the author furnishes the theory of stochastic differential equations driven by them, as well as their stability and numerical approximation theories. Highlights feature DCT and Egoroff's Theorem, as well as comprehensive analogs results from ordinary integration theory, for instance previsible envelopes and an algorithm computing stochastic integrals of càglàd integrands pathwise. Full proofs are given for all results, and motivation is stressed throughout. A large appendix contains most of the analysis that readers will need as a prerequisite. This will be an invaluable reference for graduate students and researchers in mathematics, physics, electrical engineering and finance who need to use stochastic differential equations Stochastic integrals Jump processes Stochastisches Integral (DE-588)4126478-2 gnd rswk-swf Stochastisches Integral (DE-588)4126478-2 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-14214-4 Erscheint auch als Druckausgabe 978-0-521-81129-3 https://doi.org/10.1017/CBO9780511549878 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bichteler, Klaus Stochastic integration with jumps Motivation: Stochastic Differential Equations Wiener Process The General Model Integrators and Martingales The Elementary Stochastic Integral The Semivariations Path Regularity of Integrators Processes of Finite Variation Martingales Extension of the Integral The Daniell Mean The Integration Theory of a Mean Countable Additivity in p-Mean Measurability Predictable and Previsible Processes Special Properties of Daniell's Mean The Indefinite Integral Functions of Integrators Ito's Formula Random Measures Control of Integral and Integrator Change of Measure--Factorization Martingale Inequalities The Doob-Meyer Decomposition Semimartingales Previsible Control of Integrators Levy Processes Stochastic Differential Equations Existence and Uniqueness of the Solution Stability: Differentiability in Parameters Pathwise Computation of the Solution Weak Solutions Stochastic Flows Semigroups, Markov Processes, and PDE Complements to Topology and Measure Theory Notations and Conventions Topological Miscellanea Measure and Integration Weak Convergence of Measures Analytic Sets and Capacity Suslin Spaces and Tightness of Measures The Skorohod Topology The L[superscript p]-Spaces Semigroups of Operators Stochastic integrals Jump processes Stochastisches Integral (DE-588)4126478-2 gnd |
subject_GND | (DE-588)4126478-2 |
title | Stochastic integration with jumps |
title_alt | Motivation: Stochastic Differential Equations Wiener Process The General Model Integrators and Martingales The Elementary Stochastic Integral The Semivariations Path Regularity of Integrators Processes of Finite Variation Martingales Extension of the Integral The Daniell Mean The Integration Theory of a Mean Countable Additivity in p-Mean Measurability Predictable and Previsible Processes Special Properties of Daniell's Mean The Indefinite Integral Functions of Integrators Ito's Formula Random Measures Control of Integral and Integrator Change of Measure--Factorization Martingale Inequalities The Doob-Meyer Decomposition Semimartingales Previsible Control of Integrators Levy Processes Stochastic Differential Equations Existence and Uniqueness of the Solution Stability: Differentiability in Parameters Pathwise Computation of the Solution Weak Solutions Stochastic Flows Semigroups, Markov Processes, and PDE Complements to Topology and Measure Theory Notations and Conventions Topological Miscellanea Measure and Integration Weak Convergence of Measures Analytic Sets and Capacity Suslin Spaces and Tightness of Measures The Skorohod Topology The L[superscript p]-Spaces Semigroups of Operators |
title_auth | Stochastic integration with jumps |
title_exact_search | Stochastic integration with jumps |
title_full | Stochastic integration with jumps Klaus Bichteler |
title_fullStr | Stochastic integration with jumps Klaus Bichteler |
title_full_unstemmed | Stochastic integration with jumps Klaus Bichteler |
title_short | Stochastic integration with jumps |
title_sort | stochastic integration with jumps |
topic | Stochastic integrals Jump processes Stochastisches Integral (DE-588)4126478-2 gnd |
topic_facet | Stochastic integrals Jump processes Stochastisches Integral |
url | https://doi.org/10.1017/CBO9780511549878 |
work_keys_str_mv | AT bichtelerklaus stochasticintegrationwithjumps |