Representation of rings over skew fields:
The first half of the book is a general study of homomorphisms to simple artinian rings; the techniques developed here should be of interest to many algebraists. The second half is a more detailed study of special types of skew fields which have arisen from the work of P. M. Cohn and the author. A n...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1985
|
Schriftenreihe: | London Mathematical Society lecture note series
92 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The first half of the book is a general study of homomorphisms to simple artinian rings; the techniques developed here should be of interest to many algebraists. The second half is a more detailed study of special types of skew fields which have arisen from the work of P. M. Cohn and the author. A number of questions are settled; a version of the Jacobian conjecture for free algebras is proved and there are examples of skew field extensions of different but finite left and right dimension |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xii, 223 pages) |
ISBN: | 9780511661914 |
DOI: | 10.1017/CBO9780511661914 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941999 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1985 |||| o||u| ||||||eng d | ||
020 | |a 9780511661914 |c Online |9 978-0-511-66191-4 | ||
024 | 7 | |a 10.1017/CBO9780511661914 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511661914 | ||
035 | |a (OCoLC)967776169 | ||
035 | |a (DE-599)BVBBV043941999 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.4 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Schofield, A. H. |d 1957- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Representation of rings over skew fields |c A.H. Schofield |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1985 | |
300 | |a 1 online resource (xii, 223 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 92 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a The first half of the book is a general study of homomorphisms to simple artinian rings; the techniques developed here should be of interest to many algebraists. The second half is a more detailed study of special types of skew fields which have arisen from the work of P. M. Cohn and the author. A number of questions are settled; a version of the Jacobian conjecture for free algebras is proved and there are examples of skew field extensions of different but finite left and right dimension | ||
650 | 4 | |a Commutative rings | |
650 | 4 | |a Representations of rings (Algebra) | |
650 | 4 | |a Skew fields | |
650 | 0 | 7 | |a Artinscher Ring |0 (DE-588)4202669-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schiefkörper |0 (DE-588)4052359-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ring |g Mathematik |0 (DE-588)4128084-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ringtheorie |0 (DE-588)4126571-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Artinscher Ring |0 (DE-588)4202669-6 |D s |
689 | 0 | 1 | |a Schiefkörper |0 (DE-588)4052359-7 |D s |
689 | 0 | 2 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Schiefkörper |0 (DE-588)4052359-7 |D s |
689 | 1 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 1 | 2 | |a Ring |g Mathematik |0 (DE-588)4128084-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Ringtheorie |0 (DE-588)4126571-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-27853-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511661914 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350969 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511661914 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511661914 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884354777088 |
---|---|
any_adam_object | |
author | Schofield, A. H. 1957- |
author_facet | Schofield, A. H. 1957- |
author_role | aut |
author_sort | Schofield, A. H. 1957- |
author_variant | a h s ah ahs |
building | Verbundindex |
bvnumber | BV043941999 |
classification_rvk | SI 320 SK 230 SK 260 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511661914 (OCoLC)967776169 (DE-599)BVBBV043941999 |
dewey-full | 512/.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.4 |
dewey-search | 512/.4 |
dewey-sort | 3512 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511661914 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03268nmm a2200673zcb4500</leader><controlfield tag="001">BV043941999</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511661914</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66191-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511661914</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511661914</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967776169</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941999</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.4</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schofield, A. H.</subfield><subfield code="d">1957-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representation of rings over skew fields</subfield><subfield code="c">A.H. Schofield</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 223 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">92</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The first half of the book is a general study of homomorphisms to simple artinian rings; the techniques developed here should be of interest to many algebraists. The second half is a more detailed study of special types of skew fields which have arisen from the work of P. M. Cohn and the author. A number of questions are settled; a version of the Jacobian conjecture for free algebras is proved and there are examples of skew field extensions of different but finite left and right dimension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of rings (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Skew fields</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Artinscher Ring</subfield><subfield code="0">(DE-588)4202669-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schiefkörper</subfield><subfield code="0">(DE-588)4052359-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ringtheorie</subfield><subfield code="0">(DE-588)4126571-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Artinscher Ring</subfield><subfield code="0">(DE-588)4202669-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Schiefkörper</subfield><subfield code="0">(DE-588)4052359-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Schiefkörper</subfield><subfield code="0">(DE-588)4052359-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Ringtheorie</subfield><subfield code="0">(DE-588)4126571-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-27853-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511661914</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350969</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511661914</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511661914</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941999 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511661914 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350969 |
oclc_num | 967776169 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 223 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Schofield, A. H. 1957- Verfasser aut Representation of rings over skew fields A.H. Schofield Cambridge Cambridge University Press 1985 1 online resource (xii, 223 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 92 Title from publisher's bibliographic system (viewed on 05 Oct 2015) The first half of the book is a general study of homomorphisms to simple artinian rings; the techniques developed here should be of interest to many algebraists. The second half is a more detailed study of special types of skew fields which have arisen from the work of P. M. Cohn and the author. A number of questions are settled; a version of the Jacobian conjecture for free algebras is proved and there are examples of skew field extensions of different but finite left and right dimension Commutative rings Representations of rings (Algebra) Skew fields Artinscher Ring (DE-588)4202669-6 gnd rswk-swf Schiefkörper (DE-588)4052359-7 gnd rswk-swf Ring Mathematik (DE-588)4128084-2 gnd rswk-swf Ringtheorie (DE-588)4126571-3 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Artinscher Ring (DE-588)4202669-6 s Schiefkörper (DE-588)4052359-7 s Darstellungstheorie (DE-588)4148816-7 s 1\p DE-604 Ring Mathematik (DE-588)4128084-2 s 2\p DE-604 Ringtheorie (DE-588)4126571-3 s 3\p DE-604 Erscheint auch als Druckausgabe 978-0-521-27853-9 https://doi.org/10.1017/CBO9780511661914 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schofield, A. H. 1957- Representation of rings over skew fields Commutative rings Representations of rings (Algebra) Skew fields Artinscher Ring (DE-588)4202669-6 gnd Schiefkörper (DE-588)4052359-7 gnd Ring Mathematik (DE-588)4128084-2 gnd Ringtheorie (DE-588)4126571-3 gnd Darstellungstheorie (DE-588)4148816-7 gnd |
subject_GND | (DE-588)4202669-6 (DE-588)4052359-7 (DE-588)4128084-2 (DE-588)4126571-3 (DE-588)4148816-7 |
title | Representation of rings over skew fields |
title_auth | Representation of rings over skew fields |
title_exact_search | Representation of rings over skew fields |
title_full | Representation of rings over skew fields A.H. Schofield |
title_fullStr | Representation of rings over skew fields A.H. Schofield |
title_full_unstemmed | Representation of rings over skew fields A.H. Schofield |
title_short | Representation of rings over skew fields |
title_sort | representation of rings over skew fields |
topic | Commutative rings Representations of rings (Algebra) Skew fields Artinscher Ring (DE-588)4202669-6 gnd Schiefkörper (DE-588)4052359-7 gnd Ring Mathematik (DE-588)4128084-2 gnd Ringtheorie (DE-588)4126571-3 gnd Darstellungstheorie (DE-588)4148816-7 gnd |
topic_facet | Commutative rings Representations of rings (Algebra) Skew fields Artinscher Ring Schiefkörper Ring Mathematik Ringtheorie Darstellungstheorie |
url | https://doi.org/10.1017/CBO9780511661914 |
work_keys_str_mv | AT schofieldah representationofringsoverskewfields |