The Monster group and Majorana involutions:
This is the first book to contain a rigorous construction and uniqueness proof for the largest and most famous sporadic simple group, the Monster. The author provides a systematic exposition of the theory of the Monster group, which remains largely unpublished despite great interest from both mathem...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2009
|
Schriftenreihe: | Cambridge tracts in mathematics
176 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | This is the first book to contain a rigorous construction and uniqueness proof for the largest and most famous sporadic simple group, the Monster. The author provides a systematic exposition of the theory of the Monster group, which remains largely unpublished despite great interest from both mathematicians and physicists due to its intrinsic connection with various areas in mathematics, including reflection groups, modular forms and conformal field theory. Through construction via the Monster amalgam – one of the most promising in the modern theory of finite groups – the author observes some important properties of the action of the Monster on its minimal module, which are axiomatized under the name of Majorana involutions. Development of the theory of the groups generated by Majorana involutions leads the author to the conjecture that Monster is the largest group generated by the Majorana involutions |
Beschreibung: | 1 Online-Ressource (xiii, 252 Seiten) |
ISBN: | 9780511576812 |
DOI: | 10.1017/CBO9780511576812 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941985 | ||
003 | DE-604 | ||
005 | 20190401 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2009 |||| o||u| ||||||eng d | ||
020 | |a 9780511576812 |c Online |9 978-0-511-57681-2 | ||
024 | 7 | |a 10.1017/CBO9780511576812 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511576812 | ||
035 | |a (OCoLC)850858558 | ||
035 | |a (DE-599)BVBBV043941985 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 512.23 |2 22 | |
100 | 1 | |a Ivanov, Aleksandr A. |d 1958- |e Verfasser |0 (DE-588)129886661 |4 aut | |
245 | 1 | 0 | |a The Monster group and Majorana involutions |c A.A. Ivanov |
246 | 1 | 3 | |a The Monster Group & Majorana Involutions |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2009 | |
300 | |a 1 Online-Ressource (xiii, 252 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 176 | |
505 | 8 | |a M₂₄ and all that -- Monster amalgam [actual symbol not reproducible] -- 196 883-representation of [actual symbol not reproducible] -- 2-local geometries -- Griess algebra -- Automorphisms of Griess algebra -- Important subgroups -- Majorana involutions -- Monster graph -- Fischer's story | |
520 | |a This is the first book to contain a rigorous construction and uniqueness proof for the largest and most famous sporadic simple group, the Monster. The author provides a systematic exposition of the theory of the Monster group, which remains largely unpublished despite great interest from both mathematicians and physicists due to its intrinsic connection with various areas in mathematics, including reflection groups, modular forms and conformal field theory. Through construction via the Monster amalgam – one of the most promising in the modern theory of finite groups – the author observes some important properties of the action of the Monster on its minimal module, which are axiomatized under the name of Majorana involutions. Development of the theory of the groups generated by Majorana involutions leads the author to the conjecture that Monster is the largest group generated by the Majorana involutions | ||
650 | 4 | |a Sporadic groups (Mathematics) | |
650 | 4 | |a Involutes (Mathematics) | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-88994-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511576812 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350955 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511576812 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511576812 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511576812 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884336951296 |
---|---|
any_adam_object | |
author | Ivanov, Aleksandr A. 1958- |
author_GND | (DE-588)129886661 |
author_facet | Ivanov, Aleksandr A. 1958- |
author_role | aut |
author_sort | Ivanov, Aleksandr A. 1958- |
author_variant | a a i aa aai |
building | Verbundindex |
bvnumber | BV043941985 |
collection | ZDB-20-CBO |
contents | M₂₄ and all that -- Monster amalgam [actual symbol not reproducible] -- 196 883-representation of [actual symbol not reproducible] -- 2-local geometries -- Griess algebra -- Automorphisms of Griess algebra -- Important subgroups -- Majorana involutions -- Monster graph -- Fischer's story |
ctrlnum | (ZDB-20-CBO)CR9780511576812 (OCoLC)850858558 (DE-599)BVBBV043941985 |
dewey-full | 512.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.23 |
dewey-search | 512.23 |
dewey-sort | 3512.23 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511576812 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02930nmm a2200433zcb4500</leader><controlfield tag="001">BV043941985</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190401 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511576812</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-57681-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511576812</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511576812</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850858558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941985</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.23</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ivanov, Aleksandr A.</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)129886661</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Monster group and Majorana involutions</subfield><subfield code="c">A.A. Ivanov</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">The Monster Group & Majorana Involutions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 252 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">176</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">M₂₄ and all that -- Monster amalgam [actual symbol not reproducible] -- 196 883-representation of [actual symbol not reproducible] -- 2-local geometries -- Griess algebra -- Automorphisms of Griess algebra -- Important subgroups -- Majorana involutions -- Monster graph -- Fischer's story</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is the first book to contain a rigorous construction and uniqueness proof for the largest and most famous sporadic simple group, the Monster. The author provides a systematic exposition of the theory of the Monster group, which remains largely unpublished despite great interest from both mathematicians and physicists due to its intrinsic connection with various areas in mathematics, including reflection groups, modular forms and conformal field theory. Through construction via the Monster amalgam – one of the most promising in the modern theory of finite groups – the author observes some important properties of the action of the Monster on its minimal module, which are axiomatized under the name of Majorana involutions. Development of the theory of the groups generated by Majorana involutions leads the author to the conjecture that Monster is the largest group generated by the Majorana involutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sporadic groups (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Involutes (Mathematics)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-88994-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511576812</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350955</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511576812</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511576812</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511576812</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941985 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511576812 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350955 |
oclc_num | 850858558 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xiii, 252 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Ivanov, Aleksandr A. 1958- Verfasser (DE-588)129886661 aut The Monster group and Majorana involutions A.A. Ivanov The Monster Group & Majorana Involutions Cambridge Cambridge University Press 2009 1 Online-Ressource (xiii, 252 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 176 M₂₄ and all that -- Monster amalgam [actual symbol not reproducible] -- 196 883-representation of [actual symbol not reproducible] -- 2-local geometries -- Griess algebra -- Automorphisms of Griess algebra -- Important subgroups -- Majorana involutions -- Monster graph -- Fischer's story This is the first book to contain a rigorous construction and uniqueness proof for the largest and most famous sporadic simple group, the Monster. The author provides a systematic exposition of the theory of the Monster group, which remains largely unpublished despite great interest from both mathematicians and physicists due to its intrinsic connection with various areas in mathematics, including reflection groups, modular forms and conformal field theory. Through construction via the Monster amalgam – one of the most promising in the modern theory of finite groups – the author observes some important properties of the action of the Monster on its minimal module, which are axiomatized under the name of Majorana involutions. Development of the theory of the groups generated by Majorana involutions leads the author to the conjecture that Monster is the largest group generated by the Majorana involutions Sporadic groups (Mathematics) Involutes (Mathematics) Erscheint auch als Druck-Ausgabe 978-0-521-88994-0 https://doi.org/10.1017/CBO9780511576812 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Ivanov, Aleksandr A. 1958- The Monster group and Majorana involutions M₂₄ and all that -- Monster amalgam [actual symbol not reproducible] -- 196 883-representation of [actual symbol not reproducible] -- 2-local geometries -- Griess algebra -- Automorphisms of Griess algebra -- Important subgroups -- Majorana involutions -- Monster graph -- Fischer's story Sporadic groups (Mathematics) Involutes (Mathematics) |
title | The Monster group and Majorana involutions |
title_alt | The Monster Group & Majorana Involutions |
title_auth | The Monster group and Majorana involutions |
title_exact_search | The Monster group and Majorana involutions |
title_full | The Monster group and Majorana involutions A.A. Ivanov |
title_fullStr | The Monster group and Majorana involutions A.A. Ivanov |
title_full_unstemmed | The Monster group and Majorana involutions A.A. Ivanov |
title_short | The Monster group and Majorana involutions |
title_sort | the monster group and majorana involutions |
topic | Sporadic groups (Mathematics) Involutes (Mathematics) |
topic_facet | Sporadic groups (Mathematics) Involutes (Mathematics) |
url | https://doi.org/10.1017/CBO9780511576812 |
work_keys_str_mv | AT ivanovaleksandra themonstergroupandmajoranainvolutions AT ivanovaleksandra themonstergroupmajoranainvolutions |