Frobenius manifolds and moduli spaces for singularities:
The relations between Frobenius manifolds and singularity theory are treated here in a rigorous yet accessible manner. For those working in singularity theory or other areas of complex geometry, this book will open the door to the study of Frobenius manifolds. This class of manifolds are now known t...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2002
|
Schriftenreihe: | Cambridge tracts in mathematics
151 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | The relations between Frobenius manifolds and singularity theory are treated here in a rigorous yet accessible manner. For those working in singularity theory or other areas of complex geometry, this book will open the door to the study of Frobenius manifolds. This class of manifolds are now known to be relevant for the study of singularity theory, quantum cohomology, mirror symmetry, symplectic geometry and integrable systems. The first part of the book explains the theory of manifolds with a multiplication on the tangent bundle. The second presents a simplified explanation of the role of Frobenius manifolds in singularity theory along with all the necessary tools and several applications. Readers will find here a careful and sound study of the fundamental structures and results in this exciting branch of maths. This book will serve as an excellent resource for researchers and graduate students who wish to work in this area |
Beschreibung: | 1 Online-Ressource (ix, 270 Seiten) |
ISBN: | 9780511543104 |
DOI: | 10.1017/CBO9780511543104 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941971 | ||
003 | DE-604 | ||
005 | 20190329 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780511543104 |c Online |9 978-0-511-54310-4 | ||
024 | 7 | |a 10.1017/CBO9780511543104 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511543104 | ||
035 | |a (OCoLC)849876621 | ||
035 | |a (DE-599)BVBBV043941971 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 516.3/5 |2 21 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a SK 780 |0 (DE-625)143255: |2 rvk | ||
100 | 1 | |a Hertling, Claus |e Verfasser |4 aut | |
245 | 1 | 0 | |a Frobenius manifolds and moduli spaces for singularities |c Claus Hertling |
246 | 1 | 3 | |a Frobenius Manifolds & Moduli Spaces for Singularities |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2002 | |
300 | |a 1 Online-Ressource (ix, 270 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 151 | |
505 | 8 | 0 | |t Multiplication on the tangent bundle |t First examples |t Fast track through the results |t Definition and first properties of F-manifolds |t Finite-dimensional algebras |t Vector bundles with multiplication |t Definition of F-manifolds |t Decomposition of F-manifolds and examples |t F-manifolds and potentiality |t Massive F-manifolds and Lagrange maps |t Lagrange property of massive F-manifolds |t Existence of Euler fields |t Lyashko-Looijenga maps and graphs of Lagrange maps |t Miniversal Lagrange maps and F-manifolds |t Lyashko-Looijenga map of an F-manifold |t Discriminants and modality of F-manifolds |t Discriminant of an F-manifold |t 2-dimensional F-manifolds |t Logarithmic vector fields |t Isomorphisms and modality of germs of F-manifolds |t Analytic spectrum embedded differently |t Singularities and Coxeter groups |t Hypersurface singularities |t Boundary singularities |t Coxeter groups and F-manifolds |t Coxeter groups and Frobenius manifolds |t 3-dimensional and other F-manifolds |t Frobenius manifolds, Gauss-Manin connections, and moduli spaces for hypersurface singularities |t Construction of Frobenius manifolds for singularities |t Moduli spaces and other applications |t Connections over the punctured plane |t Flat vector bundles on the punctured plane |t Lattices |t Saturated lattices |t Riemann-Hilbert-Birkhoff problem |t Spectral numbers globally |t Meromorphic connections |t Logarithmic vector fields and differential forms |t Logarithmic pole along a smooth divisor |t Logarithmic pole along any divisor |
520 | |a The relations between Frobenius manifolds and singularity theory are treated here in a rigorous yet accessible manner. For those working in singularity theory or other areas of complex geometry, this book will open the door to the study of Frobenius manifolds. This class of manifolds are now known to be relevant for the study of singularity theory, quantum cohomology, mirror symmetry, symplectic geometry and integrable systems. The first part of the book explains the theory of manifolds with a multiplication on the tangent bundle. The second presents a simplified explanation of the role of Frobenius manifolds in singularity theory along with all the necessary tools and several applications. Readers will find here a careful and sound study of the fundamental structures and results in this exciting branch of maths. This book will serve as an excellent resource for researchers and graduate students who wish to work in this area | ||
650 | 4 | |a Singularities (Mathematics) | |
650 | 4 | |a Frobenius algebras | |
650 | 4 | |a Moduli theory | |
650 | 0 | 7 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tangentialbündel |0 (DE-588)4236004-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modulraum |0 (DE-588)4183462-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Frobenius-Mannigfaltigkeit |0 (DE-588)4470001-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Frobenius-Mannigfaltigkeit |0 (DE-588)4470001-5 |D s |
689 | 0 | 1 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |D s |
689 | 0 | 2 | |a Tangentialbündel |0 (DE-588)4236004-3 |D s |
689 | 0 | 3 | |a Modulraum |0 (DE-588)4183462-8 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-81296-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511543104 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350941 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511543104 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511543104 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511543104 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884314931200 |
---|---|
any_adam_object | |
author | Hertling, Claus |
author_facet | Hertling, Claus |
author_role | aut |
author_sort | Hertling, Claus |
author_variant | c h ch |
building | Verbundindex |
bvnumber | BV043941971 |
classification_rvk | SK 370 SK 240 SK 780 |
collection | ZDB-20-CBO |
contents | Multiplication on the tangent bundle First examples Fast track through the results Definition and first properties of F-manifolds Finite-dimensional algebras Vector bundles with multiplication Definition of F-manifolds Decomposition of F-manifolds and examples F-manifolds and potentiality Massive F-manifolds and Lagrange maps Lagrange property of massive F-manifolds Existence of Euler fields Lyashko-Looijenga maps and graphs of Lagrange maps Miniversal Lagrange maps and F-manifolds Lyashko-Looijenga map of an F-manifold Discriminants and modality of F-manifolds Discriminant of an F-manifold 2-dimensional F-manifolds Logarithmic vector fields Isomorphisms and modality of germs of F-manifolds Analytic spectrum embedded differently Singularities and Coxeter groups Hypersurface singularities Boundary singularities Coxeter groups and F-manifolds Coxeter groups and Frobenius manifolds 3-dimensional and other F-manifolds Frobenius manifolds, Gauss-Manin connections, and moduli spaces for hypersurface singularities Construction of Frobenius manifolds for singularities Moduli spaces and other applications Connections over the punctured plane Flat vector bundles on the punctured plane Lattices Saturated lattices Riemann-Hilbert-Birkhoff problem Spectral numbers globally Meromorphic connections Logarithmic vector fields and differential forms Logarithmic pole along a smooth divisor Logarithmic pole along any divisor |
ctrlnum | (ZDB-20-CBO)CR9780511543104 (OCoLC)849876621 (DE-599)BVBBV043941971 |
dewey-full | 516.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/5 |
dewey-search | 516.3/5 |
dewey-sort | 3516.3 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511543104 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04812nmm a2200589zcb4500</leader><controlfield tag="001">BV043941971</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190329 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511543104</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54310-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511543104</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511543104</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849876621</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941971</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/5</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 780</subfield><subfield code="0">(DE-625)143255:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hertling, Claus</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Frobenius manifolds and moduli spaces for singularities</subfield><subfield code="c">Claus Hertling</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Frobenius Manifolds & Moduli Spaces for Singularities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 270 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">151</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Multiplication on the tangent bundle</subfield><subfield code="t">First examples</subfield><subfield code="t">Fast track through the results</subfield><subfield code="t">Definition and first properties of F-manifolds</subfield><subfield code="t">Finite-dimensional algebras</subfield><subfield code="t">Vector bundles with multiplication</subfield><subfield code="t">Definition of F-manifolds</subfield><subfield code="t">Decomposition of F-manifolds and examples</subfield><subfield code="t">F-manifolds and potentiality</subfield><subfield code="t">Massive F-manifolds and Lagrange maps</subfield><subfield code="t">Lagrange property of massive F-manifolds</subfield><subfield code="t">Existence of Euler fields</subfield><subfield code="t">Lyashko-Looijenga maps and graphs of Lagrange maps</subfield><subfield code="t">Miniversal Lagrange maps and F-manifolds</subfield><subfield code="t">Lyashko-Looijenga map of an F-manifold</subfield><subfield code="t">Discriminants and modality of F-manifolds</subfield><subfield code="t">Discriminant of an F-manifold</subfield><subfield code="t">2-dimensional F-manifolds</subfield><subfield code="t">Logarithmic vector fields</subfield><subfield code="t">Isomorphisms and modality of germs of F-manifolds</subfield><subfield code="t">Analytic spectrum embedded differently</subfield><subfield code="t">Singularities and Coxeter groups</subfield><subfield code="t">Hypersurface singularities</subfield><subfield code="t">Boundary singularities</subfield><subfield code="t">Coxeter groups and F-manifolds</subfield><subfield code="t">Coxeter groups and Frobenius manifolds</subfield><subfield code="t">3-dimensional and other F-manifolds</subfield><subfield code="t">Frobenius manifolds, Gauss-Manin connections, and moduli spaces for hypersurface singularities</subfield><subfield code="t">Construction of Frobenius manifolds for singularities</subfield><subfield code="t">Moduli spaces and other applications</subfield><subfield code="t">Connections over the punctured plane</subfield><subfield code="t">Flat vector bundles on the punctured plane</subfield><subfield code="t">Lattices</subfield><subfield code="t">Saturated lattices</subfield><subfield code="t">Riemann-Hilbert-Birkhoff problem</subfield><subfield code="t">Spectral numbers globally</subfield><subfield code="t">Meromorphic connections</subfield><subfield code="t">Logarithmic vector fields and differential forms</subfield><subfield code="t">Logarithmic pole along a smooth divisor</subfield><subfield code="t">Logarithmic pole along any divisor</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The relations between Frobenius manifolds and singularity theory are treated here in a rigorous yet accessible manner. For those working in singularity theory or other areas of complex geometry, this book will open the door to the study of Frobenius manifolds. This class of manifolds are now known to be relevant for the study of singularity theory, quantum cohomology, mirror symmetry, symplectic geometry and integrable systems. The first part of the book explains the theory of manifolds with a multiplication on the tangent bundle. The second presents a simplified explanation of the role of Frobenius manifolds in singularity theory along with all the necessary tools and several applications. Readers will find here a careful and sound study of the fundamental structures and results in this exciting branch of maths. This book will serve as an excellent resource for researchers and graduate students who wish to work in this area</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singularities (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frobenius algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moduli theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tangentialbündel</subfield><subfield code="0">(DE-588)4236004-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulraum</subfield><subfield code="0">(DE-588)4183462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Frobenius-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4470001-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Frobenius-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4470001-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Tangentialbündel</subfield><subfield code="0">(DE-588)4236004-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Modulraum</subfield><subfield code="0">(DE-588)4183462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-81296-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511543104</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350941</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511543104</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511543104</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511543104</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941971 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511543104 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350941 |
oclc_num | 849876621 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (ix, 270 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Hertling, Claus Verfasser aut Frobenius manifolds and moduli spaces for singularities Claus Hertling Frobenius Manifolds & Moduli Spaces for Singularities Cambridge Cambridge University Press 2002 1 Online-Ressource (ix, 270 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 151 Multiplication on the tangent bundle First examples Fast track through the results Definition and first properties of F-manifolds Finite-dimensional algebras Vector bundles with multiplication Definition of F-manifolds Decomposition of F-manifolds and examples F-manifolds and potentiality Massive F-manifolds and Lagrange maps Lagrange property of massive F-manifolds Existence of Euler fields Lyashko-Looijenga maps and graphs of Lagrange maps Miniversal Lagrange maps and F-manifolds Lyashko-Looijenga map of an F-manifold Discriminants and modality of F-manifolds Discriminant of an F-manifold 2-dimensional F-manifolds Logarithmic vector fields Isomorphisms and modality of germs of F-manifolds Analytic spectrum embedded differently Singularities and Coxeter groups Hypersurface singularities Boundary singularities Coxeter groups and F-manifolds Coxeter groups and Frobenius manifolds 3-dimensional and other F-manifolds Frobenius manifolds, Gauss-Manin connections, and moduli spaces for hypersurface singularities Construction of Frobenius manifolds for singularities Moduli spaces and other applications Connections over the punctured plane Flat vector bundles on the punctured plane Lattices Saturated lattices Riemann-Hilbert-Birkhoff problem Spectral numbers globally Meromorphic connections Logarithmic vector fields and differential forms Logarithmic pole along a smooth divisor Logarithmic pole along any divisor The relations between Frobenius manifolds and singularity theory are treated here in a rigorous yet accessible manner. For those working in singularity theory or other areas of complex geometry, this book will open the door to the study of Frobenius manifolds. This class of manifolds are now known to be relevant for the study of singularity theory, quantum cohomology, mirror symmetry, symplectic geometry and integrable systems. The first part of the book explains the theory of manifolds with a multiplication on the tangent bundle. The second presents a simplified explanation of the role of Frobenius manifolds in singularity theory along with all the necessary tools and several applications. Readers will find here a careful and sound study of the fundamental structures and results in this exciting branch of maths. This book will serve as an excellent resource for researchers and graduate students who wish to work in this area Singularities (Mathematics) Frobenius algebras Moduli theory Singularität Mathematik (DE-588)4077459-4 gnd rswk-swf Tangentialbündel (DE-588)4236004-3 gnd rswk-swf Modulraum (DE-588)4183462-8 gnd rswk-swf Frobenius-Mannigfaltigkeit (DE-588)4470001-5 gnd rswk-swf Frobenius-Mannigfaltigkeit (DE-588)4470001-5 s Singularität Mathematik (DE-588)4077459-4 s Tangentialbündel (DE-588)4236004-3 s Modulraum (DE-588)4183462-8 s DE-604 Erscheint auch als Druck-Ausgabe 978-0-521-81296-2 https://doi.org/10.1017/CBO9780511543104 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Hertling, Claus Frobenius manifolds and moduli spaces for singularities Multiplication on the tangent bundle First examples Fast track through the results Definition and first properties of F-manifolds Finite-dimensional algebras Vector bundles with multiplication Definition of F-manifolds Decomposition of F-manifolds and examples F-manifolds and potentiality Massive F-manifolds and Lagrange maps Lagrange property of massive F-manifolds Existence of Euler fields Lyashko-Looijenga maps and graphs of Lagrange maps Miniversal Lagrange maps and F-manifolds Lyashko-Looijenga map of an F-manifold Discriminants and modality of F-manifolds Discriminant of an F-manifold 2-dimensional F-manifolds Logarithmic vector fields Isomorphisms and modality of germs of F-manifolds Analytic spectrum embedded differently Singularities and Coxeter groups Hypersurface singularities Boundary singularities Coxeter groups and F-manifolds Coxeter groups and Frobenius manifolds 3-dimensional and other F-manifolds Frobenius manifolds, Gauss-Manin connections, and moduli spaces for hypersurface singularities Construction of Frobenius manifolds for singularities Moduli spaces and other applications Connections over the punctured plane Flat vector bundles on the punctured plane Lattices Saturated lattices Riemann-Hilbert-Birkhoff problem Spectral numbers globally Meromorphic connections Logarithmic vector fields and differential forms Logarithmic pole along a smooth divisor Logarithmic pole along any divisor Singularities (Mathematics) Frobenius algebras Moduli theory Singularität Mathematik (DE-588)4077459-4 gnd Tangentialbündel (DE-588)4236004-3 gnd Modulraum (DE-588)4183462-8 gnd Frobenius-Mannigfaltigkeit (DE-588)4470001-5 gnd |
subject_GND | (DE-588)4077459-4 (DE-588)4236004-3 (DE-588)4183462-8 (DE-588)4470001-5 |
title | Frobenius manifolds and moduli spaces for singularities |
title_alt | Frobenius Manifolds & Moduli Spaces for Singularities Multiplication on the tangent bundle First examples Fast track through the results Definition and first properties of F-manifolds Finite-dimensional algebras Vector bundles with multiplication Definition of F-manifolds Decomposition of F-manifolds and examples F-manifolds and potentiality Massive F-manifolds and Lagrange maps Lagrange property of massive F-manifolds Existence of Euler fields Lyashko-Looijenga maps and graphs of Lagrange maps Miniversal Lagrange maps and F-manifolds Lyashko-Looijenga map of an F-manifold Discriminants and modality of F-manifolds Discriminant of an F-manifold 2-dimensional F-manifolds Logarithmic vector fields Isomorphisms and modality of germs of F-manifolds Analytic spectrum embedded differently Singularities and Coxeter groups Hypersurface singularities Boundary singularities Coxeter groups and F-manifolds Coxeter groups and Frobenius manifolds 3-dimensional and other F-manifolds Frobenius manifolds, Gauss-Manin connections, and moduli spaces for hypersurface singularities Construction of Frobenius manifolds for singularities Moduli spaces and other applications Connections over the punctured plane Flat vector bundles on the punctured plane Lattices Saturated lattices Riemann-Hilbert-Birkhoff problem Spectral numbers globally Meromorphic connections Logarithmic vector fields and differential forms Logarithmic pole along a smooth divisor Logarithmic pole along any divisor |
title_auth | Frobenius manifolds and moduli spaces for singularities |
title_exact_search | Frobenius manifolds and moduli spaces for singularities |
title_full | Frobenius manifolds and moduli spaces for singularities Claus Hertling |
title_fullStr | Frobenius manifolds and moduli spaces for singularities Claus Hertling |
title_full_unstemmed | Frobenius manifolds and moduli spaces for singularities Claus Hertling |
title_short | Frobenius manifolds and moduli spaces for singularities |
title_sort | frobenius manifolds and moduli spaces for singularities |
topic | Singularities (Mathematics) Frobenius algebras Moduli theory Singularität Mathematik (DE-588)4077459-4 gnd Tangentialbündel (DE-588)4236004-3 gnd Modulraum (DE-588)4183462-8 gnd Frobenius-Mannigfaltigkeit (DE-588)4470001-5 gnd |
topic_facet | Singularities (Mathematics) Frobenius algebras Moduli theory Singularität Mathematik Tangentialbündel Modulraum Frobenius-Mannigfaltigkeit |
url | https://doi.org/10.1017/CBO9780511543104 |
work_keys_str_mv | AT hertlingclaus frobeniusmanifoldsandmodulispacesforsingularities AT hertlingclaus frobeniusmanifoldsmodulispacesforsingularities |