Homological questions in local algebra:
This book presents an account of several conjectures arising in commutative algebra from the pioneering work of Serre and Auslander-Buchsbaum. The approach is via Hochster's 'Big Cohen-Macaulay modules', though the complementary view point of Peskine-Szpiro and Roberts, who study the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1990
|
Schriftenreihe: | London Mathematical Society lecture note series
145 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book presents an account of several conjectures arising in commutative algebra from the pioneering work of Serre and Auslander-Buchsbaum. The approach is via Hochster's 'Big Cohen-Macaulay modules', though the complementary view point of Peskine-Szpiro and Roberts, who study the homology of certain complexes, is not neglected. Various refinements of Hochster's construction, obtained in collaboration with Bartijn, are included. A special feature is a long chapter written by Van den Dries which explains how a certain type of result can be 'lifted' from prime characteristic to characteristic zero. Though this is primarily a research monograph, it does provide introductions to most of the topics treated. Non-experts may therefore find it an appealing guide into an active area of algebra |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiii, 308 pages) |
ISBN: | 9780511629242 |
DOI: | 10.1017/CBO9780511629242 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941909 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1990 |||| o||u| ||||||eng d | ||
020 | |a 9780511629242 |c Online |9 978-0-511-62924-2 | ||
024 | 7 | |a 10.1017/CBO9780511629242 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511629242 | ||
035 | |a (OCoLC)967775650 | ||
035 | |a (DE-599)BVBBV043941909 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.24 |2 20 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
100 | 1 | |a Strooker, Jan R. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Homological questions in local algebra |c Jan R. Strooker |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1990 | |
300 | |a 1 online resource (xiii, 308 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 145 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book presents an account of several conjectures arising in commutative algebra from the pioneering work of Serre and Auslander-Buchsbaum. The approach is via Hochster's 'Big Cohen-Macaulay modules', though the complementary view point of Peskine-Szpiro and Roberts, who study the homology of certain complexes, is not neglected. Various refinements of Hochster's construction, obtained in collaboration with Bartijn, are included. A special feature is a long chapter written by Van den Dries which explains how a certain type of result can be 'lifted' from prime characteristic to characteristic zero. Though this is primarily a research monograph, it does provide introductions to most of the topics treated. Non-experts may therefore find it an appealing guide into an active area of algebra | ||
650 | 4 | |a Commutative algebra | |
650 | 4 | |a Homology theory | |
650 | 0 | 7 | |a Homologische Algebra |0 (DE-588)4160598-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homologietheorie |0 (DE-588)4141714-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stellenalgebra |0 (DE-588)4183082-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stellenalgebra |0 (DE-588)4183082-9 |D s |
689 | 0 | 1 | |a Homologietheorie |0 (DE-588)4141714-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Homologische Algebra |0 (DE-588)4160598-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-31526-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511629242 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350879 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511629242 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511629242 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884194344960 |
---|---|
any_adam_object | |
author | Strooker, Jan R. |
author_facet | Strooker, Jan R. |
author_role | aut |
author_sort | Strooker, Jan R. |
author_variant | j r s jr jrs |
building | Verbundindex |
bvnumber | BV043941909 |
classification_rvk | SI 320 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511629242 (OCoLC)967775650 (DE-599)BVBBV043941909 |
dewey-full | 512/.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.24 |
dewey-search | 512/.24 |
dewey-sort | 3512 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511629242 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02978nmm a2200541zcb4500</leader><controlfield tag="001">BV043941909</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511629242</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-62924-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511629242</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511629242</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967775650</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941909</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.24</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Strooker, Jan R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Homological questions in local algebra</subfield><subfield code="c">Jan R. Strooker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 308 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">145</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents an account of several conjectures arising in commutative algebra from the pioneering work of Serre and Auslander-Buchsbaum. The approach is via Hochster's 'Big Cohen-Macaulay modules', though the complementary view point of Peskine-Szpiro and Roberts, who study the homology of certain complexes, is not neglected. Various refinements of Hochster's construction, obtained in collaboration with Bartijn, are included. A special feature is a long chapter written by Van den Dries which explains how a certain type of result can be 'lifted' from prime characteristic to characteristic zero. Though this is primarily a research monograph, it does provide introductions to most of the topics treated. Non-experts may therefore find it an appealing guide into an active area of algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homologische Algebra</subfield><subfield code="0">(DE-588)4160598-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stellenalgebra</subfield><subfield code="0">(DE-588)4183082-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stellenalgebra</subfield><subfield code="0">(DE-588)4183082-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Homologische Algebra</subfield><subfield code="0">(DE-588)4160598-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-31526-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511629242</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350879</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511629242</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511629242</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941909 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511629242 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350879 |
oclc_num | 967775650 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 308 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Strooker, Jan R. Verfasser aut Homological questions in local algebra Jan R. Strooker Cambridge Cambridge University Press 1990 1 online resource (xiii, 308 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 145 Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book presents an account of several conjectures arising in commutative algebra from the pioneering work of Serre and Auslander-Buchsbaum. The approach is via Hochster's 'Big Cohen-Macaulay modules', though the complementary view point of Peskine-Szpiro and Roberts, who study the homology of certain complexes, is not neglected. Various refinements of Hochster's construction, obtained in collaboration with Bartijn, are included. A special feature is a long chapter written by Van den Dries which explains how a certain type of result can be 'lifted' from prime characteristic to characteristic zero. Though this is primarily a research monograph, it does provide introductions to most of the topics treated. Non-experts may therefore find it an appealing guide into an active area of algebra Commutative algebra Homology theory Homologische Algebra (DE-588)4160598-6 gnd rswk-swf Homologietheorie (DE-588)4141714-8 gnd rswk-swf Stellenalgebra (DE-588)4183082-9 gnd rswk-swf Stellenalgebra (DE-588)4183082-9 s Homologietheorie (DE-588)4141714-8 s 1\p DE-604 Homologische Algebra (DE-588)4160598-6 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-31526-5 https://doi.org/10.1017/CBO9780511629242 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Strooker, Jan R. Homological questions in local algebra Commutative algebra Homology theory Homologische Algebra (DE-588)4160598-6 gnd Homologietheorie (DE-588)4141714-8 gnd Stellenalgebra (DE-588)4183082-9 gnd |
subject_GND | (DE-588)4160598-6 (DE-588)4141714-8 (DE-588)4183082-9 |
title | Homological questions in local algebra |
title_auth | Homological questions in local algebra |
title_exact_search | Homological questions in local algebra |
title_full | Homological questions in local algebra Jan R. Strooker |
title_fullStr | Homological questions in local algebra Jan R. Strooker |
title_full_unstemmed | Homological questions in local algebra Jan R. Strooker |
title_short | Homological questions in local algebra |
title_sort | homological questions in local algebra |
topic | Commutative algebra Homology theory Homologische Algebra (DE-588)4160598-6 gnd Homologietheorie (DE-588)4141714-8 gnd Stellenalgebra (DE-588)4183082-9 gnd |
topic_facet | Commutative algebra Homology theory Homologische Algebra Homologietheorie Stellenalgebra |
url | https://doi.org/10.1017/CBO9780511629242 |
work_keys_str_mv | AT strookerjanr homologicalquestionsinlocalalgebra |