Orthonormal systems and Banach space geometry:
Orthonormal Systems and Banach Space Geometry describes the interplay between orthonormal expansions and Banach space geometry. Using harmonic analysis as a starting platform, classical inequalities and special functions are used to study orthonormal systems leading to an understanding of the advant...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1998
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 70 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Orthonormal Systems and Banach Space Geometry describes the interplay between orthonormal expansions and Banach space geometry. Using harmonic analysis as a starting platform, classical inequalities and special functions are used to study orthonormal systems leading to an understanding of the advantages of systems consisting of characters on compact Abelian groups. Probabilistic concepts such as random variables and martingales are employed and Ramsey's theorem is used to study the theory of super-reflexivity. The text yields a detailed insight into concepts including type and co-type of Banach spaces, B-convexity, super-reflexivity, the vector-valued Fourier transform, the vector-valued Hilbert transform and the unconditionality property for martingale differences (UMD). A long list of unsolved problems is included as a starting point for research. This book should be accessible to graduate students and researchers with some basic knowledge of Banach space theory, real analysis, probability and algebra |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (ix, 553 pages) |
ISBN: | 9780511526145 |
DOI: | 10.1017/CBO9780511526145 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941868 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1998 |||| o||u| ||||||eng d | ||
020 | |a 9780511526145 |c Online |9 978-0-511-52614-5 | ||
024 | 7 | |a 10.1017/CBO9780511526145 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511526145 | ||
035 | |a (OCoLC)849917643 | ||
035 | |a (DE-599)BVBBV043941868 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.732 |2 21 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
100 | 1 | |a Pietsch, A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Orthonormal systems and Banach space geometry |c Albrecht Pietsch & Jörg Wenzel |
246 | 1 | 3 | |a Orthonormal Systems & Banach Space Geometry |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1998 | |
300 | |a 1 online resource (ix, 553 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 70 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Orthonormal Systems and Banach Space Geometry describes the interplay between orthonormal expansions and Banach space geometry. Using harmonic analysis as a starting platform, classical inequalities and special functions are used to study orthonormal systems leading to an understanding of the advantages of systems consisting of characters on compact Abelian groups. Probabilistic concepts such as random variables and martingales are employed and Ramsey's theorem is used to study the theory of super-reflexivity. The text yields a detailed insight into concepts including type and co-type of Banach spaces, B-convexity, super-reflexivity, the vector-valued Fourier transform, the vector-valued Hilbert transform and the unconditionality property for martingale differences (UMD). A long list of unsolved problems is included as a starting point for research. This book should be accessible to graduate students and researchers with some basic knowledge of Banach space theory, real analysis, probability and algebra | ||
650 | 4 | |a Banach spaces | |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Banach-Raum |0 (DE-588)4004402-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Banach-Raum |0 (DE-588)4004402-6 |D s |
689 | 0 | 1 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Wenzel, Jörg |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-05431-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-62462-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511526145 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350838 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511526145 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511526145 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884111507456 |
---|---|
any_adam_object | |
author | Pietsch, A. |
author_facet | Pietsch, A. |
author_role | aut |
author_sort | Pietsch, A. |
author_variant | a p ap |
building | Verbundindex |
bvnumber | BV043941868 |
classification_rvk | SK 600 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511526145 (OCoLC)849917643 (DE-599)BVBBV043941868 |
dewey-full | 515/.732 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.732 |
dewey-search | 515/.732 |
dewey-sort | 3515 3732 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511526145 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03093nmm a2200517zcb4500</leader><controlfield tag="001">BV043941868</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526145</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-52614-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511526145</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511526145</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849917643</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941868</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.732</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pietsch, A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Orthonormal systems and Banach space geometry</subfield><subfield code="c">Albrecht Pietsch & Jörg Wenzel</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Orthonormal Systems & Banach Space Geometry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 553 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 70</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Orthonormal Systems and Banach Space Geometry describes the interplay between orthonormal expansions and Banach space geometry. Using harmonic analysis as a starting platform, classical inequalities and special functions are used to study orthonormal systems leading to an understanding of the advantages of systems consisting of characters on compact Abelian groups. Probabilistic concepts such as random variables and martingales are employed and Ramsey's theorem is used to study the theory of super-reflexivity. The text yields a detailed insight into concepts including type and co-type of Banach spaces, B-convexity, super-reflexivity, the vector-valued Fourier transform, the vector-valued Hilbert transform and the unconditionality property for martingale differences (UMD). A long list of unsolved problems is included as a starting point for research. This book should be accessible to graduate students and researchers with some basic knowledge of Banach space theory, real analysis, probability and algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wenzel, Jörg</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-05431-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-62462-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511526145</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350838</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526145</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526145</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941868 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511526145 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350838 |
oclc_num | 849917643 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (ix, 553 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Pietsch, A. Verfasser aut Orthonormal systems and Banach space geometry Albrecht Pietsch & Jörg Wenzel Orthonormal Systems & Banach Space Geometry Cambridge Cambridge University Press 1998 1 online resource (ix, 553 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 70 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Orthonormal Systems and Banach Space Geometry describes the interplay between orthonormal expansions and Banach space geometry. Using harmonic analysis as a starting platform, classical inequalities and special functions are used to study orthonormal systems leading to an understanding of the advantages of systems consisting of characters on compact Abelian groups. Probabilistic concepts such as random variables and martingales are employed and Ramsey's theorem is used to study the theory of super-reflexivity. The text yields a detailed insight into concepts including type and co-type of Banach spaces, B-convexity, super-reflexivity, the vector-valued Fourier transform, the vector-valued Hilbert transform and the unconditionality property for martingale differences (UMD). A long list of unsolved problems is included as a starting point for research. This book should be accessible to graduate students and researchers with some basic knowledge of Banach space theory, real analysis, probability and algebra Banach spaces Geometrie (DE-588)4020236-7 gnd rswk-swf Banach-Raum (DE-588)4004402-6 gnd rswk-swf Banach-Raum (DE-588)4004402-6 s Geometrie (DE-588)4020236-7 s 1\p DE-604 Wenzel, Jörg Sonstige oth Erscheint auch als Druckausgabe 978-0-521-05431-7 Erscheint auch als Druckausgabe 978-0-521-62462-6 https://doi.org/10.1017/CBO9780511526145 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pietsch, A. Orthonormal systems and Banach space geometry Banach spaces Geometrie (DE-588)4020236-7 gnd Banach-Raum (DE-588)4004402-6 gnd |
subject_GND | (DE-588)4020236-7 (DE-588)4004402-6 |
title | Orthonormal systems and Banach space geometry |
title_alt | Orthonormal Systems & Banach Space Geometry |
title_auth | Orthonormal systems and Banach space geometry |
title_exact_search | Orthonormal systems and Banach space geometry |
title_full | Orthonormal systems and Banach space geometry Albrecht Pietsch & Jörg Wenzel |
title_fullStr | Orthonormal systems and Banach space geometry Albrecht Pietsch & Jörg Wenzel |
title_full_unstemmed | Orthonormal systems and Banach space geometry Albrecht Pietsch & Jörg Wenzel |
title_short | Orthonormal systems and Banach space geometry |
title_sort | orthonormal systems and banach space geometry |
topic | Banach spaces Geometrie (DE-588)4020236-7 gnd Banach-Raum (DE-588)4004402-6 gnd |
topic_facet | Banach spaces Geometrie Banach-Raum |
url | https://doi.org/10.1017/CBO9780511526145 |
work_keys_str_mv | AT pietscha orthonormalsystemsandbanachspacegeometry AT wenzeljorg orthonormalsystemsandbanachspacegeometry AT pietscha orthonormalsystemsbanachspacegeometry AT wenzeljorg orthonormalsystemsbanachspacegeometry |