Methods of contemporary gauge theory:
This 2002 book introduces the quantum theory of gauge fields. Emphasis is placed on four non-perturbative methods: path integrals, lattice gauge theories, the 1/N expansion, and reduced matrix models, all of which have important contemporary applications. Written as a textbook, it assumes a knowledg...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2002
|
Schriftenreihe: | Cambridge monographs on mathematical physics
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This 2002 book introduces the quantum theory of gauge fields. Emphasis is placed on four non-perturbative methods: path integrals, lattice gauge theories, the 1/N expansion, and reduced matrix models, all of which have important contemporary applications. Written as a textbook, it assumes a knowledge of quantum mechanics and elements of perturbation theory, while many relevant concepts are pedagogically introduced at a basic level in the first half of the book. The second half comprehensively covers large-N Yang-Mills theory. The book uses an approach to gauge theories based on path-dependent phase factors known as the Wilson loops, and contains problems with detailed solutions to aid understanding. Suitable for advanced graduate courses in quantum field theory, the book will also be of interest to researchers in high energy theory and condensed matter physics as a survey of recent developments in gauge theory |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xii, 417 pages) |
ISBN: | 9780511535147 |
DOI: | 10.1017/CBO9780511535147 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043941822 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780511535147 |c Online |9 978-0-511-53514-7 | ||
024 | 7 | |a 10.1017/CBO9780511535147 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511535147 | ||
035 | |a (OCoLC)699085779 | ||
035 | |a (DE-599)BVBBV043941822 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 530.14/35 |2 21 | |
084 | |a UO 4060 |0 (DE-625)146244: |2 rvk | ||
100 | 1 | |a Makeenko, Yuri |d 1951- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Methods of contemporary gauge theory |c Yuri Makeenko |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2002 | |
300 | |a 1 online resource (xii, 417 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on mathematical physics | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |t Path Integrals |t Operator calculus |t Free propagator |t Euclidean formulation |t Path-ordering of operators |t Feynman disentangling |t Calculation of the Gaussian path integral |t Transition amplitudes |t Propagators in external field |t Second quantization |t Integration over fields |t Grassmann variables |t Perturbation theory |t Schwinger-Dyson equations |t Commutator terms |t Schwinger-Dyson equations (continued) |t Regularization |t Quantum anomalies from path integral |t QED via path integral |t Chiral Ward identity |t Chiral anomaly |t Chiral anomaly (calculation) |t Scale anomaly |t Instantons in quantum mechanics |t Double-well potential |t The instanton solution |t Instanton contribution to path integral |t Symmetry restoration by instantons |t Topological charge and [theta]-vacua |t Lattice Gauge Theories |t Observables in gauge theories |t Gauge invariance |t Phase factors (definition) |t Phase factors (properties) |t Aharonov-Bohm effect |t Gauge fields on a lattice |t Sites, links, plaquettes and all that |t Lattice formulation |t The Haar measure |t Wilson loops |t Strong-coupling expansion |t Area law and confinement |t Asymptotic scaling |t Lattice methods |t Phase transitions |t Mean-field method |t Mean-field method (variational) |t Lattice renormalization group |t Monte Carlo method |t Some Monte Carlo results |t Fermions on a lattice |t Chiral fermions |t Fermion doubling |t Kogut-Susskind fermions |t Wilson fermions |t Quark condensate |t Finite temperatures |t Feynman-Kac formula |
520 | |a This 2002 book introduces the quantum theory of gauge fields. Emphasis is placed on four non-perturbative methods: path integrals, lattice gauge theories, the 1/N expansion, and reduced matrix models, all of which have important contemporary applications. Written as a textbook, it assumes a knowledge of quantum mechanics and elements of perturbation theory, while many relevant concepts are pedagogically introduced at a basic level in the first half of the book. The second half comprehensively covers large-N Yang-Mills theory. The book uses an approach to gauge theories based on path-dependent phase factors known as the Wilson loops, and contains problems with detailed solutions to aid understanding. Suitable for advanced graduate courses in quantum field theory, the book will also be of interest to researchers in high energy theory and condensed matter physics as a survey of recent developments in gauge theory | ||
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Gauge fields (Physics) | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Eichtheorie |0 (DE-588)4122125-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantentheorie |0 (DE-588)4047992-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Eichtheorie |0 (DE-588)4122125-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Quantentheorie |0 (DE-588)4047992-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-02215-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-80911-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511535147 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350792 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511535147 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511535147 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884010844160 |
---|---|
any_adam_object | |
author | Makeenko, Yuri 1951- |
author_facet | Makeenko, Yuri 1951- |
author_role | aut |
author_sort | Makeenko, Yuri 1951- |
author_variant | y m ym |
building | Verbundindex |
bvnumber | BV043941822 |
classification_rvk | UO 4060 |
collection | ZDB-20-CBO |
contents | Path Integrals Operator calculus Free propagator Euclidean formulation Path-ordering of operators Feynman disentangling Calculation of the Gaussian path integral Transition amplitudes Propagators in external field Second quantization Integration over fields Grassmann variables Perturbation theory Schwinger-Dyson equations Commutator terms Schwinger-Dyson equations (continued) Regularization Quantum anomalies from path integral QED via path integral Chiral Ward identity Chiral anomaly Chiral anomaly (calculation) Scale anomaly Instantons in quantum mechanics Double-well potential The instanton solution Instanton contribution to path integral Symmetry restoration by instantons Topological charge and [theta]-vacua Lattice Gauge Theories Observables in gauge theories Gauge invariance Phase factors (definition) Phase factors (properties) Aharonov-Bohm effect Gauge fields on a lattice Sites, links, plaquettes and all that Lattice formulation The Haar measure Wilson loops Strong-coupling expansion Area law and confinement Asymptotic scaling Lattice methods Phase transitions Mean-field method Mean-field method (variational) Lattice renormalization group Monte Carlo method Some Monte Carlo results Fermions on a lattice Chiral fermions Fermion doubling Kogut-Susskind fermions Wilson fermions Quark condensate Finite temperatures Feynman-Kac formula |
ctrlnum | (ZDB-20-CBO)CR9780511535147 (OCoLC)699085779 (DE-599)BVBBV043941822 |
dewey-full | 530.14/35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.14/35 |
dewey-search | 530.14/35 |
dewey-sort | 3530.14 235 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1017/CBO9780511535147 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04504nmm a2200553zc 4500</leader><controlfield tag="001">BV043941822</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511535147</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-53514-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511535147</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511535147</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)699085779</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941822</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.14/35</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4060</subfield><subfield code="0">(DE-625)146244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Makeenko, Yuri</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Methods of contemporary gauge theory</subfield><subfield code="c">Yuri Makeenko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 417 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Path Integrals</subfield><subfield code="t">Operator calculus</subfield><subfield code="t">Free propagator</subfield><subfield code="t">Euclidean formulation</subfield><subfield code="t">Path-ordering of operators</subfield><subfield code="t">Feynman disentangling</subfield><subfield code="t">Calculation of the Gaussian path integral</subfield><subfield code="t">Transition amplitudes</subfield><subfield code="t">Propagators in external field</subfield><subfield code="t">Second quantization</subfield><subfield code="t">Integration over fields</subfield><subfield code="t">Grassmann variables</subfield><subfield code="t">Perturbation theory</subfield><subfield code="t">Schwinger-Dyson equations</subfield><subfield code="t">Commutator terms</subfield><subfield code="t">Schwinger-Dyson equations (continued)</subfield><subfield code="t">Regularization</subfield><subfield code="t">Quantum anomalies from path integral</subfield><subfield code="t">QED via path integral</subfield><subfield code="t">Chiral Ward identity</subfield><subfield code="t">Chiral anomaly</subfield><subfield code="t">Chiral anomaly (calculation)</subfield><subfield code="t">Scale anomaly</subfield><subfield code="t">Instantons in quantum mechanics</subfield><subfield code="t">Double-well potential</subfield><subfield code="t">The instanton solution</subfield><subfield code="t">Instanton contribution to path integral</subfield><subfield code="t">Symmetry restoration by instantons</subfield><subfield code="t">Topological charge and [theta]-vacua</subfield><subfield code="t">Lattice Gauge Theories</subfield><subfield code="t">Observables in gauge theories</subfield><subfield code="t">Gauge invariance</subfield><subfield code="t">Phase factors (definition)</subfield><subfield code="t">Phase factors (properties)</subfield><subfield code="t">Aharonov-Bohm effect</subfield><subfield code="t">Gauge fields on a lattice</subfield><subfield code="t">Sites, links, plaquettes and all that</subfield><subfield code="t">Lattice formulation</subfield><subfield code="t">The Haar measure</subfield><subfield code="t">Wilson loops</subfield><subfield code="t">Strong-coupling expansion</subfield><subfield code="t">Area law and confinement</subfield><subfield code="t">Asymptotic scaling</subfield><subfield code="t">Lattice methods</subfield><subfield code="t">Phase transitions</subfield><subfield code="t">Mean-field method</subfield><subfield code="t">Mean-field method (variational)</subfield><subfield code="t">Lattice renormalization group</subfield><subfield code="t">Monte Carlo method</subfield><subfield code="t">Some Monte Carlo results</subfield><subfield code="t">Fermions on a lattice</subfield><subfield code="t">Chiral fermions</subfield><subfield code="t">Fermion doubling</subfield><subfield code="t">Kogut-Susskind fermions</subfield><subfield code="t">Wilson fermions</subfield><subfield code="t">Quark condensate</subfield><subfield code="t">Finite temperatures</subfield><subfield code="t">Feynman-Kac formula</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This 2002 book introduces the quantum theory of gauge fields. Emphasis is placed on four non-perturbative methods: path integrals, lattice gauge theories, the 1/N expansion, and reduced matrix models, all of which have important contemporary applications. Written as a textbook, it assumes a knowledge of quantum mechanics and elements of perturbation theory, while many relevant concepts are pedagogically introduced at a basic level in the first half of the book. The second half comprehensively covers large-N Yang-Mills theory. The book uses an approach to gauge theories based on path-dependent phase factors known as the Wilson loops, and contains problems with detailed solutions to aid understanding. Suitable for advanced graduate courses in quantum field theory, the book will also be of interest to researchers in high energy theory and condensed matter physics as a survey of recent developments in gauge theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gauge fields (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-02215-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-80911-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511535147</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350792</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511535147</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511535147</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941822 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511535147 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350792 |
oclc_num | 699085779 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 417 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on mathematical physics |
spelling | Makeenko, Yuri 1951- Verfasser aut Methods of contemporary gauge theory Yuri Makeenko Cambridge Cambridge University Press 2002 1 online resource (xii, 417 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on mathematical physics Title from publisher's bibliographic system (viewed on 05 Oct 2015) Path Integrals Operator calculus Free propagator Euclidean formulation Path-ordering of operators Feynman disentangling Calculation of the Gaussian path integral Transition amplitudes Propagators in external field Second quantization Integration over fields Grassmann variables Perturbation theory Schwinger-Dyson equations Commutator terms Schwinger-Dyson equations (continued) Regularization Quantum anomalies from path integral QED via path integral Chiral Ward identity Chiral anomaly Chiral anomaly (calculation) Scale anomaly Instantons in quantum mechanics Double-well potential The instanton solution Instanton contribution to path integral Symmetry restoration by instantons Topological charge and [theta]-vacua Lattice Gauge Theories Observables in gauge theories Gauge invariance Phase factors (definition) Phase factors (properties) Aharonov-Bohm effect Gauge fields on a lattice Sites, links, plaquettes and all that Lattice formulation The Haar measure Wilson loops Strong-coupling expansion Area law and confinement Asymptotic scaling Lattice methods Phase transitions Mean-field method Mean-field method (variational) Lattice renormalization group Monte Carlo method Some Monte Carlo results Fermions on a lattice Chiral fermions Fermion doubling Kogut-Susskind fermions Wilson fermions Quark condensate Finite temperatures Feynman-Kac formula This 2002 book introduces the quantum theory of gauge fields. Emphasis is placed on four non-perturbative methods: path integrals, lattice gauge theories, the 1/N expansion, and reduced matrix models, all of which have important contemporary applications. Written as a textbook, it assumes a knowledge of quantum mechanics and elements of perturbation theory, while many relevant concepts are pedagogically introduced at a basic level in the first half of the book. The second half comprehensively covers large-N Yang-Mills theory. The book uses an approach to gauge theories based on path-dependent phase factors known as the Wilson loops, and contains problems with detailed solutions to aid understanding. Suitable for advanced graduate courses in quantum field theory, the book will also be of interest to researchers in high energy theory and condensed matter physics as a survey of recent developments in gauge theory Mathematische Physik Gauge fields (Physics) Mathematical physics Eichtheorie (DE-588)4122125-4 gnd rswk-swf Quantentheorie (DE-588)4047992-4 gnd rswk-swf Eichtheorie (DE-588)4122125-4 s 1\p DE-604 Quantentheorie (DE-588)4047992-4 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-02215-6 Erscheint auch als Druckausgabe 978-0-521-80911-5 https://doi.org/10.1017/CBO9780511535147 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Makeenko, Yuri 1951- Methods of contemporary gauge theory Path Integrals Operator calculus Free propagator Euclidean formulation Path-ordering of operators Feynman disentangling Calculation of the Gaussian path integral Transition amplitudes Propagators in external field Second quantization Integration over fields Grassmann variables Perturbation theory Schwinger-Dyson equations Commutator terms Schwinger-Dyson equations (continued) Regularization Quantum anomalies from path integral QED via path integral Chiral Ward identity Chiral anomaly Chiral anomaly (calculation) Scale anomaly Instantons in quantum mechanics Double-well potential The instanton solution Instanton contribution to path integral Symmetry restoration by instantons Topological charge and [theta]-vacua Lattice Gauge Theories Observables in gauge theories Gauge invariance Phase factors (definition) Phase factors (properties) Aharonov-Bohm effect Gauge fields on a lattice Sites, links, plaquettes and all that Lattice formulation The Haar measure Wilson loops Strong-coupling expansion Area law and confinement Asymptotic scaling Lattice methods Phase transitions Mean-field method Mean-field method (variational) Lattice renormalization group Monte Carlo method Some Monte Carlo results Fermions on a lattice Chiral fermions Fermion doubling Kogut-Susskind fermions Wilson fermions Quark condensate Finite temperatures Feynman-Kac formula Mathematische Physik Gauge fields (Physics) Mathematical physics Eichtheorie (DE-588)4122125-4 gnd Quantentheorie (DE-588)4047992-4 gnd |
subject_GND | (DE-588)4122125-4 (DE-588)4047992-4 |
title | Methods of contemporary gauge theory |
title_alt | Path Integrals Operator calculus Free propagator Euclidean formulation Path-ordering of operators Feynman disentangling Calculation of the Gaussian path integral Transition amplitudes Propagators in external field Second quantization Integration over fields Grassmann variables Perturbation theory Schwinger-Dyson equations Commutator terms Schwinger-Dyson equations (continued) Regularization Quantum anomalies from path integral QED via path integral Chiral Ward identity Chiral anomaly Chiral anomaly (calculation) Scale anomaly Instantons in quantum mechanics Double-well potential The instanton solution Instanton contribution to path integral Symmetry restoration by instantons Topological charge and [theta]-vacua Lattice Gauge Theories Observables in gauge theories Gauge invariance Phase factors (definition) Phase factors (properties) Aharonov-Bohm effect Gauge fields on a lattice Sites, links, plaquettes and all that Lattice formulation The Haar measure Wilson loops Strong-coupling expansion Area law and confinement Asymptotic scaling Lattice methods Phase transitions Mean-field method Mean-field method (variational) Lattice renormalization group Monte Carlo method Some Monte Carlo results Fermions on a lattice Chiral fermions Fermion doubling Kogut-Susskind fermions Wilson fermions Quark condensate Finite temperatures Feynman-Kac formula |
title_auth | Methods of contemporary gauge theory |
title_exact_search | Methods of contemporary gauge theory |
title_full | Methods of contemporary gauge theory Yuri Makeenko |
title_fullStr | Methods of contemporary gauge theory Yuri Makeenko |
title_full_unstemmed | Methods of contemporary gauge theory Yuri Makeenko |
title_short | Methods of contemporary gauge theory |
title_sort | methods of contemporary gauge theory |
topic | Mathematische Physik Gauge fields (Physics) Mathematical physics Eichtheorie (DE-588)4122125-4 gnd Quantentheorie (DE-588)4047992-4 gnd |
topic_facet | Mathematische Physik Gauge fields (Physics) Mathematical physics Eichtheorie Quantentheorie |
url | https://doi.org/10.1017/CBO9780511535147 |
work_keys_str_mv | AT makeenkoyuri methodsofcontemporarygaugetheory |