Curve and surface reconstruction: algorithms with mathematical analysis
Many applications in science and engineering require a digital model of a real physical object. Advanced scanning technology has made it possible to scan such objects and generate point samples on their boundaries. This book, first published in 2007, shows how to compute a digital model from this po...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schriftenreihe: | Cambridge monographs on applied and computational mathematics
23 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Many applications in science and engineering require a digital model of a real physical object. Advanced scanning technology has made it possible to scan such objects and generate point samples on their boundaries. This book, first published in 2007, shows how to compute a digital model from this point sample. After developing the basics of sampling theory and its connections to various geometric and topological properties, the author describes a suite of algorithms that have been designed for the reconstruction problem, including algorithms for surface reconstruction from dense samples, from samples that are not adequately dense and from noisy samples. Voronoi- and Delaunay-based techniques, implicit surface-based methods and Morse theory-based methods are covered. Scientists and engineers working in drug design, medical imaging, CAD, GIS, and many other areas will benefit from this first book on the subject |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiii, 214 pages) |
ISBN: | 9780511546860 |
DOI: | 10.1017/CBO9780511546860 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941808 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780511546860 |c Online |9 978-0-511-54686-0 | ||
024 | 7 | |a 10.1017/CBO9780511546860 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511546860 | ||
035 | |a (OCoLC)850267480 | ||
035 | |a (DE-599)BVBBV043941808 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516.3/62 |2 22 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Dey, Tamal K. |d 1964- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Curve and surface reconstruction |b algorithms with mathematical analysis |c Tamal K. Dey |
246 | 1 | 3 | |a Curve & Surface Reconstruction |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 online resource (xiii, 214 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on applied and computational mathematics |v 23 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |g 1 |t Basics |g 2 |t Curve reconstruction |g 3 |t Surface samples |g 4 |t Surface reconstruction |g 5 |t Undersampling |g 6 |t Watertight reconstructions |g 7 |t Noisy samples |g 8 |t Noise and reconstruction |g 9 |t Implicit surface-based reconstructions |g 10 |t Morse theoretic reconstructions |
520 | |a Many applications in science and engineering require a digital model of a real physical object. Advanced scanning technology has made it possible to scan such objects and generate point samples on their boundaries. This book, first published in 2007, shows how to compute a digital model from this point sample. After developing the basics of sampling theory and its connections to various geometric and topological properties, the author describes a suite of algorithms that have been designed for the reconstruction problem, including algorithms for surface reconstruction from dense samples, from samples that are not adequately dense and from noisy samples. Voronoi- and Delaunay-based techniques, implicit surface-based methods and Morse theory-based methods are covered. Scientists and engineers working in drug design, medical imaging, CAD, GIS, and many other areas will benefit from this first book on the subject | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Curves on surfaces / Mathematical models | |
650 | 4 | |a Surfaces / Mathematical models | |
650 | 4 | |a Surfaces, Models of | |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kurve |0 (DE-588)4033824-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Modellierung |0 (DE-588)4156717-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ebene Kurve |0 (DE-588)4150970-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximationsalgorithmus |0 (DE-588)4500954-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Oberfläche |0 (DE-588)4042907-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fläche |0 (DE-588)4129864-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | 1 | |a Kurve |0 (DE-588)4033824-1 |D s |
689 | 0 | 2 | |a Fläche |0 (DE-588)4129864-0 |D s |
689 | 0 | 3 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Oberfläche |0 (DE-588)4042907-6 |D s |
689 | 1 | 1 | |a Geometrische Modellierung |0 (DE-588)4156717-1 |D s |
689 | 1 | 2 | |a Approximationsalgorithmus |0 (DE-588)4500954-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Ebene Kurve |0 (DE-588)4150970-5 |D s |
689 | 2 | 1 | |a Geometrische Modellierung |0 (DE-588)4156717-1 |D s |
689 | 2 | 2 | |a Approximationsalgorithmus |0 (DE-588)4500954-5 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-17518-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-86370-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511546860 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350778 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511546860 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511546860 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883984629760 |
---|---|
any_adam_object | |
author | Dey, Tamal K. 1964- |
author_facet | Dey, Tamal K. 1964- |
author_role | aut |
author_sort | Dey, Tamal K. 1964- |
author_variant | t k d tk tkd |
building | Verbundindex |
bvnumber | BV043941808 |
classification_rvk | SK 370 |
collection | ZDB-20-CBO |
contents | Basics Curve reconstruction Surface samples Surface reconstruction Undersampling Watertight reconstructions Noisy samples Noise and reconstruction Implicit surface-based reconstructions Morse theoretic reconstructions |
ctrlnum | (ZDB-20-CBO)CR9780511546860 (OCoLC)850267480 (DE-599)BVBBV043941808 |
dewey-full | 516.3/62 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/62 |
dewey-search | 516.3/62 |
dewey-sort | 3516.3 262 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511546860 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04493nmm a2200769zcb4500</leader><controlfield tag="001">BV043941808</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511546860</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54686-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511546860</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511546860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850267480</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941808</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/62</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dey, Tamal K.</subfield><subfield code="d">1964-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Curve and surface reconstruction</subfield><subfield code="b">algorithms with mathematical analysis</subfield><subfield code="c">Tamal K. Dey</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Curve & Surface Reconstruction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 214 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on applied and computational mathematics</subfield><subfield code="v">23</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="g">1</subfield><subfield code="t">Basics</subfield><subfield code="g">2</subfield><subfield code="t">Curve reconstruction</subfield><subfield code="g">3</subfield><subfield code="t">Surface samples</subfield><subfield code="g">4</subfield><subfield code="t">Surface reconstruction</subfield><subfield code="g">5</subfield><subfield code="t">Undersampling</subfield><subfield code="g">6</subfield><subfield code="t">Watertight reconstructions</subfield><subfield code="g">7</subfield><subfield code="t">Noisy samples</subfield><subfield code="g">8</subfield><subfield code="t">Noise and reconstruction</subfield><subfield code="g">9</subfield><subfield code="t">Implicit surface-based reconstructions</subfield><subfield code="g">10</subfield><subfield code="t">Morse theoretic reconstructions</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many applications in science and engineering require a digital model of a real physical object. Advanced scanning technology has made it possible to scan such objects and generate point samples on their boundaries. This book, first published in 2007, shows how to compute a digital model from this point sample. After developing the basics of sampling theory and its connections to various geometric and topological properties, the author describes a suite of algorithms that have been designed for the reconstruction problem, including algorithms for surface reconstruction from dense samples, from samples that are not adequately dense and from noisy samples. Voronoi- and Delaunay-based techniques, implicit surface-based methods and Morse theory-based methods are covered. Scientists and engineers working in drug design, medical imaging, CAD, GIS, and many other areas will benefit from this first book on the subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curves on surfaces / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces, Models of</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kurve</subfield><subfield code="0">(DE-588)4033824-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Modellierung</subfield><subfield code="0">(DE-588)4156717-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ebene Kurve</subfield><subfield code="0">(DE-588)4150970-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationsalgorithmus</subfield><subfield code="0">(DE-588)4500954-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Oberfläche</subfield><subfield code="0">(DE-588)4042907-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fläche</subfield><subfield code="0">(DE-588)4129864-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kurve</subfield><subfield code="0">(DE-588)4033824-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fläche</subfield><subfield code="0">(DE-588)4129864-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Oberfläche</subfield><subfield code="0">(DE-588)4042907-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Geometrische Modellierung</subfield><subfield code="0">(DE-588)4156717-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Approximationsalgorithmus</subfield><subfield code="0">(DE-588)4500954-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Ebene Kurve</subfield><subfield code="0">(DE-588)4150970-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Geometrische Modellierung</subfield><subfield code="0">(DE-588)4156717-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Approximationsalgorithmus</subfield><subfield code="0">(DE-588)4500954-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-17518-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-86370-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511546860</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350778</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546860</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546860</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941808 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511546860 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350778 |
oclc_num | 850267480 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 214 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on applied and computational mathematics |
spelling | Dey, Tamal K. 1964- Verfasser aut Curve and surface reconstruction algorithms with mathematical analysis Tamal K. Dey Curve & Surface Reconstruction Cambridge Cambridge University Press 2007 1 online resource (xiii, 214 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on applied and computational mathematics 23 Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1 Basics 2 Curve reconstruction 3 Surface samples 4 Surface reconstruction 5 Undersampling 6 Watertight reconstructions 7 Noisy samples 8 Noise and reconstruction 9 Implicit surface-based reconstructions 10 Morse theoretic reconstructions Many applications in science and engineering require a digital model of a real physical object. Advanced scanning technology has made it possible to scan such objects and generate point samples on their boundaries. This book, first published in 2007, shows how to compute a digital model from this point sample. After developing the basics of sampling theory and its connections to various geometric and topological properties, the author describes a suite of algorithms that have been designed for the reconstruction problem, including algorithms for surface reconstruction from dense samples, from samples that are not adequately dense and from noisy samples. Voronoi- and Delaunay-based techniques, implicit surface-based methods and Morse theory-based methods are covered. Scientists and engineers working in drug design, medical imaging, CAD, GIS, and many other areas will benefit from this first book on the subject Mathematisches Modell Curves on surfaces / Mathematical models Surfaces / Mathematical models Surfaces, Models of Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Kurve (DE-588)4033824-1 gnd rswk-swf Geometrische Modellierung (DE-588)4156717-1 gnd rswk-swf Ebene Kurve (DE-588)4150970-5 gnd rswk-swf Approximationsalgorithmus (DE-588)4500954-5 gnd rswk-swf Oberfläche (DE-588)4042907-6 gnd rswk-swf Fläche (DE-588)4129864-0 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 s Kurve (DE-588)4033824-1 s Fläche (DE-588)4129864-0 s Mathematisches Modell (DE-588)4114528-8 s 1\p DE-604 Oberfläche (DE-588)4042907-6 s Geometrische Modellierung (DE-588)4156717-1 s Approximationsalgorithmus (DE-588)4500954-5 s 2\p DE-604 Ebene Kurve (DE-588)4150970-5 s 3\p DE-604 Erscheint auch als Druckausgabe 978-0-521-17518-0 Erscheint auch als Druckausgabe 978-0-521-86370-4 https://doi.org/10.1017/CBO9780511546860 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dey, Tamal K. 1964- Curve and surface reconstruction algorithms with mathematical analysis Basics Curve reconstruction Surface samples Surface reconstruction Undersampling Watertight reconstructions Noisy samples Noise and reconstruction Implicit surface-based reconstructions Morse theoretic reconstructions Mathematisches Modell Curves on surfaces / Mathematical models Surfaces / Mathematical models Surfaces, Models of Mathematisches Modell (DE-588)4114528-8 gnd Differentialgeometrie (DE-588)4012248-7 gnd Kurve (DE-588)4033824-1 gnd Geometrische Modellierung (DE-588)4156717-1 gnd Ebene Kurve (DE-588)4150970-5 gnd Approximationsalgorithmus (DE-588)4500954-5 gnd Oberfläche (DE-588)4042907-6 gnd Fläche (DE-588)4129864-0 gnd |
subject_GND | (DE-588)4114528-8 (DE-588)4012248-7 (DE-588)4033824-1 (DE-588)4156717-1 (DE-588)4150970-5 (DE-588)4500954-5 (DE-588)4042907-6 (DE-588)4129864-0 |
title | Curve and surface reconstruction algorithms with mathematical analysis |
title_alt | Curve & Surface Reconstruction Basics Curve reconstruction Surface samples Surface reconstruction Undersampling Watertight reconstructions Noisy samples Noise and reconstruction Implicit surface-based reconstructions Morse theoretic reconstructions |
title_auth | Curve and surface reconstruction algorithms with mathematical analysis |
title_exact_search | Curve and surface reconstruction algorithms with mathematical analysis |
title_full | Curve and surface reconstruction algorithms with mathematical analysis Tamal K. Dey |
title_fullStr | Curve and surface reconstruction algorithms with mathematical analysis Tamal K. Dey |
title_full_unstemmed | Curve and surface reconstruction algorithms with mathematical analysis Tamal K. Dey |
title_short | Curve and surface reconstruction |
title_sort | curve and surface reconstruction algorithms with mathematical analysis |
title_sub | algorithms with mathematical analysis |
topic | Mathematisches Modell Curves on surfaces / Mathematical models Surfaces / Mathematical models Surfaces, Models of Mathematisches Modell (DE-588)4114528-8 gnd Differentialgeometrie (DE-588)4012248-7 gnd Kurve (DE-588)4033824-1 gnd Geometrische Modellierung (DE-588)4156717-1 gnd Ebene Kurve (DE-588)4150970-5 gnd Approximationsalgorithmus (DE-588)4500954-5 gnd Oberfläche (DE-588)4042907-6 gnd Fläche (DE-588)4129864-0 gnd |
topic_facet | Mathematisches Modell Curves on surfaces / Mathematical models Surfaces / Mathematical models Surfaces, Models of Differentialgeometrie Kurve Geometrische Modellierung Ebene Kurve Approximationsalgorithmus Oberfläche Fläche |
url | https://doi.org/10.1017/CBO9780511546860 |
work_keys_str_mv | AT deytamalk curveandsurfacereconstructionalgorithmswithmathematicalanalysis AT deytamalk curvesurfacereconstruction |