Real analysis through modern infinitesimals:
Real Analysis Through Modern Infinitesimals provides a course on mathematical analysis based on Internal Set Theory (IST) introduced by Edward Nelson in 1977. After motivating IST through an ultrapower construction, the book provides a careful development of this theory representing each external cl...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2011
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 140 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Real Analysis Through Modern Infinitesimals provides a course on mathematical analysis based on Internal Set Theory (IST) introduced by Edward Nelson in 1977. After motivating IST through an ultrapower construction, the book provides a careful development of this theory representing each external class as a proper class. This foundational discussion, which is presented in the first two chapters, includes an account of the basic internal and external properties of the real number system as an entity within IST. In its remaining fourteen chapters, the book explores the consequences of the perspective offered by IST as a wide range of real analysis topics are surveyed. The topics thus developed begin with those usually discussed in an advanced undergraduate analysis course and gradually move to topics that are suitable for more advanced readers. This book may be used for reference, self-study, and as a source for advanced undergraduate or graduate courses |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xix, 565 pages) |
ISBN: | 9780511740305 |
DOI: | 10.1017/CBO9780511740305 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941688 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2011 |||| o||u| ||||||eng d | ||
020 | |a 9780511740305 |c Online |9 978-0-511-74030-5 | ||
024 | 7 | |a 10.1017/CBO9780511740305 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511740305 | ||
035 | |a (OCoLC)890469790 | ||
035 | |a (DE-599)BVBBV043941688 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515 |2 22 | |
084 | |a SK 400 |0 (DE-625)143237: |2 rvk | ||
100 | 1 | |a Vakil, Nader |e Verfasser |4 aut | |
245 | 1 | 0 | |a Real analysis through modern infinitesimals |c Nader Vakil |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2011 | |
300 | |a 1 online resource (xix, 565 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 140 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Preface; Introduction; Part I. Elements of Real Analysis: 1. Internal set theory; 2. The real number system; 3. Sequences and series; 4. The topology of R; 5. Limits and continuity; 6. Differentiation; 7. Integration; 8. Sequences and series of functions; 9. Infinite series; Part II. Elements of Abstract Analysis: 10. Point set topology; 11. Metric spaces; 12. Complete metric spaces; 13. Some applications of completeness; 14. Linear operators; 15. Differential calculus on Rn; 16. Function space topologies; A. Vector spaces; B. The b-adic representation of numbers; C. Finite, denumerable, and uncountable sets; D. The syntax of mathematical languages; References; Index | |
520 | |a Real Analysis Through Modern Infinitesimals provides a course on mathematical analysis based on Internal Set Theory (IST) introduced by Edward Nelson in 1977. After motivating IST through an ultrapower construction, the book provides a careful development of this theory representing each external class as a proper class. This foundational discussion, which is presented in the first two chapters, includes an account of the basic internal and external properties of the real number system as an entity within IST. In its remaining fourteen chapters, the book explores the consequences of the perspective offered by IST as a wide range of real analysis topics are surveyed. The topics thus developed begin with those usually discussed in an advanced undergraduate analysis course and gradually move to topics that are suitable for more advanced readers. This book may be used for reference, self-study, and as a source for advanced undergraduate or graduate courses | ||
650 | 4 | |a Mathematical analysis | |
650 | 4 | |a Set theory | |
650 | 0 | 7 | |a Infinitesimalanalysis |0 (DE-588)4161657-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Infinitesimalanalysis |0 (DE-588)4161657-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-00202-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511740305 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350658 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511740305 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511740305 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883751845888 |
---|---|
any_adam_object | |
author | Vakil, Nader |
author_facet | Vakil, Nader |
author_role | aut |
author_sort | Vakil, Nader |
author_variant | n v nv |
building | Verbundindex |
bvnumber | BV043941688 |
classification_rvk | SK 400 |
collection | ZDB-20-CBO |
contents | Preface; Introduction; Part I. Elements of Real Analysis: 1. Internal set theory; 2. The real number system; 3. Sequences and series; 4. The topology of R; 5. Limits and continuity; 6. Differentiation; 7. Integration; 8. Sequences and series of functions; 9. Infinite series; Part II. Elements of Abstract Analysis: 10. Point set topology; 11. Metric spaces; 12. Complete metric spaces; 13. Some applications of completeness; 14. Linear operators; 15. Differential calculus on Rn; 16. Function space topologies; A. Vector spaces; B. The b-adic representation of numbers; C. Finite, denumerable, and uncountable sets; D. The syntax of mathematical languages; References; Index |
ctrlnum | (ZDB-20-CBO)CR9780511740305 (OCoLC)890469790 (DE-599)BVBBV043941688 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511740305 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03483nmm a2200481zcb4500</leader><controlfield tag="001">BV043941688</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511740305</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-74030-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511740305</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511740305</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)890469790</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941688</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 400</subfield><subfield code="0">(DE-625)143237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vakil, Nader</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real analysis through modern infinitesimals</subfield><subfield code="c">Nader Vakil</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xix, 565 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 140</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Preface; Introduction; Part I. Elements of Real Analysis: 1. Internal set theory; 2. The real number system; 3. Sequences and series; 4. The topology of R; 5. Limits and continuity; 6. Differentiation; 7. Integration; 8. Sequences and series of functions; 9. Infinite series; Part II. Elements of Abstract Analysis: 10. Point set topology; 11. Metric spaces; 12. Complete metric spaces; 13. Some applications of completeness; 14. Linear operators; 15. Differential calculus on Rn; 16. Function space topologies; A. Vector spaces; B. The b-adic representation of numbers; C. Finite, denumerable, and uncountable sets; D. The syntax of mathematical languages; References; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Real Analysis Through Modern Infinitesimals provides a course on mathematical analysis based on Internal Set Theory (IST) introduced by Edward Nelson in 1977. After motivating IST through an ultrapower construction, the book provides a careful development of this theory representing each external class as a proper class. This foundational discussion, which is presented in the first two chapters, includes an account of the basic internal and external properties of the real number system as an entity within IST. In its remaining fourteen chapters, the book explores the consequences of the perspective offered by IST as a wide range of real analysis topics are surveyed. The topics thus developed begin with those usually discussed in an advanced undergraduate analysis course and gradually move to topics that are suitable for more advanced readers. This book may be used for reference, self-study, and as a source for advanced undergraduate or graduate courses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Infinitesimalanalysis</subfield><subfield code="0">(DE-588)4161657-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Infinitesimalanalysis</subfield><subfield code="0">(DE-588)4161657-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-00202-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511740305</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350658</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511740305</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511740305</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941688 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511740305 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350658 |
oclc_num | 890469790 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xix, 565 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Vakil, Nader Verfasser aut Real analysis through modern infinitesimals Nader Vakil Cambridge Cambridge University Press 2011 1 online resource (xix, 565 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 140 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Preface; Introduction; Part I. Elements of Real Analysis: 1. Internal set theory; 2. The real number system; 3. Sequences and series; 4. The topology of R; 5. Limits and continuity; 6. Differentiation; 7. Integration; 8. Sequences and series of functions; 9. Infinite series; Part II. Elements of Abstract Analysis: 10. Point set topology; 11. Metric spaces; 12. Complete metric spaces; 13. Some applications of completeness; 14. Linear operators; 15. Differential calculus on Rn; 16. Function space topologies; A. Vector spaces; B. The b-adic representation of numbers; C. Finite, denumerable, and uncountable sets; D. The syntax of mathematical languages; References; Index Real Analysis Through Modern Infinitesimals provides a course on mathematical analysis based on Internal Set Theory (IST) introduced by Edward Nelson in 1977. After motivating IST through an ultrapower construction, the book provides a careful development of this theory representing each external class as a proper class. This foundational discussion, which is presented in the first two chapters, includes an account of the basic internal and external properties of the real number system as an entity within IST. In its remaining fourteen chapters, the book explores the consequences of the perspective offered by IST as a wide range of real analysis topics are surveyed. The topics thus developed begin with those usually discussed in an advanced undergraduate analysis course and gradually move to topics that are suitable for more advanced readers. This book may be used for reference, self-study, and as a source for advanced undergraduate or graduate courses Mathematical analysis Set theory Infinitesimalanalysis (DE-588)4161657-1 gnd rswk-swf Infinitesimalanalysis (DE-588)4161657-1 s 1\p DE-604 Erscheint auch als Druckausgabe 978-1-107-00202-9 https://doi.org/10.1017/CBO9780511740305 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Vakil, Nader Real analysis through modern infinitesimals Preface; Introduction; Part I. Elements of Real Analysis: 1. Internal set theory; 2. The real number system; 3. Sequences and series; 4. The topology of R; 5. Limits and continuity; 6. Differentiation; 7. Integration; 8. Sequences and series of functions; 9. Infinite series; Part II. Elements of Abstract Analysis: 10. Point set topology; 11. Metric spaces; 12. Complete metric spaces; 13. Some applications of completeness; 14. Linear operators; 15. Differential calculus on Rn; 16. Function space topologies; A. Vector spaces; B. The b-adic representation of numbers; C. Finite, denumerable, and uncountable sets; D. The syntax of mathematical languages; References; Index Mathematical analysis Set theory Infinitesimalanalysis (DE-588)4161657-1 gnd |
subject_GND | (DE-588)4161657-1 |
title | Real analysis through modern infinitesimals |
title_auth | Real analysis through modern infinitesimals |
title_exact_search | Real analysis through modern infinitesimals |
title_full | Real analysis through modern infinitesimals Nader Vakil |
title_fullStr | Real analysis through modern infinitesimals Nader Vakil |
title_full_unstemmed | Real analysis through modern infinitesimals Nader Vakil |
title_short | Real analysis through modern infinitesimals |
title_sort | real analysis through modern infinitesimals |
topic | Mathematical analysis Set theory Infinitesimalanalysis (DE-588)4161657-1 gnd |
topic_facet | Mathematical analysis Set theory Infinitesimalanalysis |
url | https://doi.org/10.1017/CBO9780511740305 |
work_keys_str_mv | AT vakilnader realanalysisthroughmoderninfinitesimals |