Linear algebraic monoids:
This book provides an introduction to the field of linear algebraic monoids. This subject represents a synthesis of ideas from the theory of algebraic groups, algebraic geometry, matrix theory and abstract semigroup theory. Since every representation of an algebraic group gives rise to an algebraic...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1988
|
Schriftenreihe: | London Mathematical Society lecture note series
133 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book provides an introduction to the field of linear algebraic monoids. This subject represents a synthesis of ideas from the theory of algebraic groups, algebraic geometry, matrix theory and abstract semigroup theory. Since every representation of an algebraic group gives rise to an algebraic monoid, the objects of study do indeed arise naturally |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (x, 171 pages) |
ISBN: | 9780511600661 |
DOI: | 10.1017/CBO9780511600661 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941672 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1988 |||| o||u| ||||||eng d | ||
020 | |a 9780511600661 |c Online |9 978-0-511-60066-1 | ||
024 | 7 | |a 10.1017/CBO9780511600661 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511600661 | ||
035 | |a (OCoLC)967601450 | ||
035 | |a (DE-599)BVBBV043941672 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.55 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Putcha, Mohan S. |d 1952- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Linear algebraic monoids |c Mohan S. Putcha |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1988 | |
300 | |a 1 online resource (x, 171 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 133 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book provides an introduction to the field of linear algebraic monoids. This subject represents a synthesis of ideas from the theory of algebraic groups, algebraic geometry, matrix theory and abstract semigroup theory. Since every representation of an algebraic group gives rise to an algebraic monoid, the objects of study do indeed arise naturally | ||
650 | 4 | |a Monoids | |
650 | 0 | 7 | |a Algebraische Halbgruppe |0 (DE-588)4298313-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineares algebraisches Monoid |0 (DE-588)4204286-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineares algebraisches Monoid |0 (DE-588)4204286-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Algebraische Halbgruppe |0 (DE-588)4298313-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-35809-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511600661 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350642 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511600661 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511600661 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883738214400 |
---|---|
any_adam_object | |
author | Putcha, Mohan S. 1952- |
author_facet | Putcha, Mohan S. 1952- |
author_role | aut |
author_sort | Putcha, Mohan S. 1952- |
author_variant | m s p ms msp |
building | Verbundindex |
bvnumber | BV043941672 |
classification_rvk | SI 320 SK 260 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511600661 (OCoLC)967601450 (DE-599)BVBBV043941672 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511600661 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02442nmm a2200517zcb4500</leader><controlfield tag="001">BV043941672</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511600661</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-60066-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511600661</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511600661</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967601450</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941672</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Putcha, Mohan S.</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear algebraic monoids</subfield><subfield code="c">Mohan S. Putcha</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 171 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">133</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides an introduction to the field of linear algebraic monoids. This subject represents a synthesis of ideas from the theory of algebraic groups, algebraic geometry, matrix theory and abstract semigroup theory. Since every representation of an algebraic group gives rise to an algebraic monoid, the objects of study do indeed arise naturally</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monoids</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Halbgruppe</subfield><subfield code="0">(DE-588)4298313-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineares algebraisches Monoid</subfield><subfield code="0">(DE-588)4204286-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineares algebraisches Monoid</subfield><subfield code="0">(DE-588)4204286-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Halbgruppe</subfield><subfield code="0">(DE-588)4298313-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-35809-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511600661</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350642</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511600661</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511600661</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941672 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511600661 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350642 |
oclc_num | 967601450 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (x, 171 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Putcha, Mohan S. 1952- Verfasser aut Linear algebraic monoids Mohan S. Putcha Cambridge Cambridge University Press 1988 1 online resource (x, 171 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 133 Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book provides an introduction to the field of linear algebraic monoids. This subject represents a synthesis of ideas from the theory of algebraic groups, algebraic geometry, matrix theory and abstract semigroup theory. Since every representation of an algebraic group gives rise to an algebraic monoid, the objects of study do indeed arise naturally Monoids Algebraische Halbgruppe (DE-588)4298313-7 gnd rswk-swf Lineares algebraisches Monoid (DE-588)4204286-0 gnd rswk-swf Lineares algebraisches Monoid (DE-588)4204286-0 s 1\p DE-604 Algebraische Halbgruppe (DE-588)4298313-7 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-35809-5 https://doi.org/10.1017/CBO9780511600661 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Putcha, Mohan S. 1952- Linear algebraic monoids Monoids Algebraische Halbgruppe (DE-588)4298313-7 gnd Lineares algebraisches Monoid (DE-588)4204286-0 gnd |
subject_GND | (DE-588)4298313-7 (DE-588)4204286-0 |
title | Linear algebraic monoids |
title_auth | Linear algebraic monoids |
title_exact_search | Linear algebraic monoids |
title_full | Linear algebraic monoids Mohan S. Putcha |
title_fullStr | Linear algebraic monoids Mohan S. Putcha |
title_full_unstemmed | Linear algebraic monoids Mohan S. Putcha |
title_short | Linear algebraic monoids |
title_sort | linear algebraic monoids |
topic | Monoids Algebraische Halbgruppe (DE-588)4298313-7 gnd Lineares algebraisches Monoid (DE-588)4204286-0 gnd |
topic_facet | Monoids Algebraische Halbgruppe Lineares algebraisches Monoid |
url | https://doi.org/10.1017/CBO9780511600661 |
work_keys_str_mv | AT putchamohans linearalgebraicmonoids |