Harmonic analysis and representation theory for groups acting on homogeneous trees:
These notes treat in full detail the theory of representations of the group of automorphisms of a homogeneous tree. The unitary irreducible representations are classified in three types: a continuous series of spherical representations; two special representations; and a countable series of cuspidal...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1991
|
Schriftenreihe: | London Mathematical Society lecture note series
162 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | These notes treat in full detail the theory of representations of the group of automorphisms of a homogeneous tree. The unitary irreducible representations are classified in three types: a continuous series of spherical representations; two special representations; and a countable series of cuspidal representations as defined by G.I. Ol'shiankii. Several notable subgroups of the full automorphism group are also considered. The theory of spherical functions as eigenvalues of a Laplace (or Hecke) operator on the tree is used to introduce spherical representations and their restrictions to discrete subgroups. This will be an excellent companion for all researchers into harmonic analysis or representation theory |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (ix, 151 pages) |
ISBN: | 9780511662324 |
DOI: | 10.1017/CBO9780511662324 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941604 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1991 |||| o||u| ||||||eng d | ||
020 | |a 9780511662324 |c Online |9 978-0-511-66232-4 | ||
024 | 7 | |a 10.1017/CBO9780511662324 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511662324 | ||
035 | |a (OCoLC)849785421 | ||
035 | |a (DE-599)BVBBV043941604 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515.2433 |2 20 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
100 | 1 | |a Figà-Talamanca, Alessandro |d 1938- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Harmonic analysis and representation theory for groups acting on homogeneous trees |c Alessandro Figà-Talamanca and Claudio Nebbia |
246 | 1 | 3 | |a Harmonic Analysis & Representation Theory for Groups Acting on Homogenous Trees |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1991 | |
300 | |a 1 online resource (ix, 151 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 162 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a These notes treat in full detail the theory of representations of the group of automorphisms of a homogeneous tree. The unitary irreducible representations are classified in three types: a continuous series of spherical representations; two special representations; and a countable series of cuspidal representations as defined by G.I. Ol'shiankii. Several notable subgroups of the full automorphism group are also considered. The theory of spherical functions as eigenvalues of a Laplace (or Hecke) operator on the tree is used to introduce spherical representations and their restrictions to discrete subgroups. This will be an excellent companion for all researchers into harmonic analysis or representation theory | ||
650 | 4 | |a Automorphisms | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Representations of groups | |
650 | 0 | 7 | |a Irreduzible Darstellung |0 (DE-588)4162430-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Automorphismengruppe |0 (DE-588)4143708-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homogener Baum |0 (DE-588)4160584-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Automorphismengruppe |0 (DE-588)4143708-1 |D s |
689 | 0 | 1 | |a Homogener Baum |0 (DE-588)4160584-6 |D s |
689 | 0 | 2 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | 3 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Homogener Baum |0 (DE-588)4160584-6 |D s |
689 | 1 | 1 | |a Automorphismengruppe |0 (DE-588)4143708-1 |D s |
689 | 1 | 2 | |a Irreduzible Darstellung |0 (DE-588)4162430-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Nebbia, Claudio |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-42444-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511662324 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350574 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511662324 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511662324 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883586170880 |
---|---|
any_adam_object | |
author | Figà-Talamanca, Alessandro 1938- |
author_facet | Figà-Talamanca, Alessandro 1938- |
author_role | aut |
author_sort | Figà-Talamanca, Alessandro 1938- |
author_variant | a f t aft |
building | Verbundindex |
bvnumber | BV043941604 |
classification_rvk | SI 320 SK 260 SK 450 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511662324 (OCoLC)849785421 (DE-599)BVBBV043941604 |
dewey-full | 515.2433 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.2433 |
dewey-search | 515.2433 |
dewey-sort | 3515.2433 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511662324 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03641nmm a2200673zcb4500</leader><controlfield tag="001">BV043941604</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662324</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66232-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511662324</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511662324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849785421</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941604</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.2433</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Figà-Talamanca, Alessandro</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Harmonic analysis and representation theory for groups acting on homogeneous trees</subfield><subfield code="c">Alessandro Figà-Talamanca and Claudio Nebbia</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Harmonic Analysis & Representation Theory for Groups Acting on Homogenous Trees</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 151 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">162</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">These notes treat in full detail the theory of representations of the group of automorphisms of a homogeneous tree. The unitary irreducible representations are classified in three types: a continuous series of spherical representations; two special representations; and a countable series of cuspidal representations as defined by G.I. Ol'shiankii. Several notable subgroups of the full automorphism group are also considered. The theory of spherical functions as eigenvalues of a Laplace (or Hecke) operator on the tree is used to introduce spherical representations and their restrictions to discrete subgroups. This will be an excellent companion for all researchers into harmonic analysis or representation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automorphisms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Irreduzible Darstellung</subfield><subfield code="0">(DE-588)4162430-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automorphismengruppe</subfield><subfield code="0">(DE-588)4143708-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homogener Baum</subfield><subfield code="0">(DE-588)4160584-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Automorphismengruppe</subfield><subfield code="0">(DE-588)4143708-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Homogener Baum</subfield><subfield code="0">(DE-588)4160584-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Homogener Baum</subfield><subfield code="0">(DE-588)4160584-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Automorphismengruppe</subfield><subfield code="0">(DE-588)4143708-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Irreduzible Darstellung</subfield><subfield code="0">(DE-588)4162430-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nebbia, Claudio</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-42444-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511662324</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350574</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662324</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662324</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941604 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511662324 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350574 |
oclc_num | 849785421 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (ix, 151 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Figà-Talamanca, Alessandro 1938- Verfasser aut Harmonic analysis and representation theory for groups acting on homogeneous trees Alessandro Figà-Talamanca and Claudio Nebbia Harmonic Analysis & Representation Theory for Groups Acting on Homogenous Trees Cambridge Cambridge University Press 1991 1 online resource (ix, 151 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 162 Title from publisher's bibliographic system (viewed on 05 Oct 2015) These notes treat in full detail the theory of representations of the group of automorphisms of a homogeneous tree. The unitary irreducible representations are classified in three types: a continuous series of spherical representations; two special representations; and a countable series of cuspidal representations as defined by G.I. Ol'shiankii. Several notable subgroups of the full automorphism group are also considered. The theory of spherical functions as eigenvalues of a Laplace (or Hecke) operator on the tree is used to introduce spherical representations and their restrictions to discrete subgroups. This will be an excellent companion for all researchers into harmonic analysis or representation theory Automorphisms Harmonic analysis Representations of groups Irreduzible Darstellung (DE-588)4162430-0 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Automorphismengruppe (DE-588)4143708-1 gnd rswk-swf Homogener Baum (DE-588)4160584-6 gnd rswk-swf Automorphismengruppe (DE-588)4143708-1 s Homogener Baum (DE-588)4160584-6 s Darstellungstheorie (DE-588)4148816-7 s Harmonische Analyse (DE-588)4023453-8 s 1\p DE-604 Irreduzible Darstellung (DE-588)4162430-0 s 2\p DE-604 Nebbia, Claudio Sonstige oth Erscheint auch als Druckausgabe 978-0-521-42444-8 https://doi.org/10.1017/CBO9780511662324 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Figà-Talamanca, Alessandro 1938- Harmonic analysis and representation theory for groups acting on homogeneous trees Automorphisms Harmonic analysis Representations of groups Irreduzible Darstellung (DE-588)4162430-0 gnd Harmonische Analyse (DE-588)4023453-8 gnd Darstellungstheorie (DE-588)4148816-7 gnd Automorphismengruppe (DE-588)4143708-1 gnd Homogener Baum (DE-588)4160584-6 gnd |
subject_GND | (DE-588)4162430-0 (DE-588)4023453-8 (DE-588)4148816-7 (DE-588)4143708-1 (DE-588)4160584-6 |
title | Harmonic analysis and representation theory for groups acting on homogeneous trees |
title_alt | Harmonic Analysis & Representation Theory for Groups Acting on Homogenous Trees |
title_auth | Harmonic analysis and representation theory for groups acting on homogeneous trees |
title_exact_search | Harmonic analysis and representation theory for groups acting on homogeneous trees |
title_full | Harmonic analysis and representation theory for groups acting on homogeneous trees Alessandro Figà-Talamanca and Claudio Nebbia |
title_fullStr | Harmonic analysis and representation theory for groups acting on homogeneous trees Alessandro Figà-Talamanca and Claudio Nebbia |
title_full_unstemmed | Harmonic analysis and representation theory for groups acting on homogeneous trees Alessandro Figà-Talamanca and Claudio Nebbia |
title_short | Harmonic analysis and representation theory for groups acting on homogeneous trees |
title_sort | harmonic analysis and representation theory for groups acting on homogeneous trees |
topic | Automorphisms Harmonic analysis Representations of groups Irreduzible Darstellung (DE-588)4162430-0 gnd Harmonische Analyse (DE-588)4023453-8 gnd Darstellungstheorie (DE-588)4148816-7 gnd Automorphismengruppe (DE-588)4143708-1 gnd Homogener Baum (DE-588)4160584-6 gnd |
topic_facet | Automorphisms Harmonic analysis Representations of groups Irreduzible Darstellung Harmonische Analyse Darstellungstheorie Automorphismengruppe Homogener Baum |
url | https://doi.org/10.1017/CBO9780511662324 |
work_keys_str_mv | AT figatalamancaalessandro harmonicanalysisandrepresentationtheoryforgroupsactingonhomogeneoustrees AT nebbiaclaudio harmonicanalysisandrepresentationtheoryforgroupsactingonhomogeneoustrees AT figatalamancaalessandro harmonicanalysisrepresentationtheoryforgroupsactingonhomogenoustrees AT nebbiaclaudio harmonicanalysisrepresentationtheoryforgroupsactingonhomogenoustrees |