Algebraic curves over finite fields:
In this Tract Professor Moreno develops the theory of algebraic curves over finite fields, their zeta and L-functions, and, for the first time, the theory of algebraic geometric Goppa codes on algebraic curves. Amongst the applications considered are: the problem of counting the number of solutions...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1990
|
Schriftenreihe: | Cambridge tracts in mathematics
97 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | In this Tract Professor Moreno develops the theory of algebraic curves over finite fields, their zeta and L-functions, and, for the first time, the theory of algebraic geometric Goppa codes on algebraic curves. Amongst the applications considered are: the problem of counting the number of solutions of equations over finite fields; Bombieri's proof of the Reimann hypothesis for function fields, with consequences for the estimation of exponential sums in one variable; Goppa's theory of error-correcting codes constructed from linear systems on algebraic curves. There is also a new proof of the Tsfasman–Vladut–Zink theorem. The prerequisites needed to follow this book are few, and it can be used for graduate courses for mathematics students. Electrical engineers who need to understand the modern developments in the theory of error-correcting codes will also benefit from studying this work |
Beschreibung: | 1 Online-Ressource (ix, 246 Seiten) |
ISBN: | 9780511608766 |
DOI: | 10.1017/CBO9780511608766 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940984 | ||
003 | DE-604 | ||
005 | 20190426 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1990 |||| o||u| ||||||eng d | ||
020 | |a 9780511608766 |c Online |9 978-0-511-60876-6 | ||
024 | 7 | |a 10.1017/CBO9780511608766 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511608766 | ||
035 | |a (OCoLC)967600194 | ||
035 | |a (DE-599)BVBBV043940984 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 516.3/52 |2 20 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Moreno, Carlos J. |d 1946- |e Verfasser |0 (DE-588)142213543 |4 aut | |
245 | 1 | 0 | |a Algebraic curves over finite fields |c Carlos Moreno |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1990 | |
300 | |a 1 Online-Ressource (ix, 246 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 97 | |
520 | |a In this Tract Professor Moreno develops the theory of algebraic curves over finite fields, their zeta and L-functions, and, for the first time, the theory of algebraic geometric Goppa codes on algebraic curves. Amongst the applications considered are: the problem of counting the number of solutions of equations over finite fields; Bombieri's proof of the Reimann hypothesis for function fields, with consequences for the estimation of exponential sums in one variable; Goppa's theory of error-correcting codes constructed from linear systems on algebraic curves. There is also a new proof of the Tsfasman–Vladut–Zink theorem. The prerequisites needed to follow this book are few, and it can be used for graduate courses for mathematics students. Electrical engineers who need to understand the modern developments in the theory of error-correcting codes will also benefit from studying this work | ||
650 | 4 | |a Curves, Algebraic | |
650 | 4 | |a Algebraic fields | |
650 | 4 | |a Functions, Zeta | |
650 | 0 | 7 | |a Galois-Feld |0 (DE-588)4155896-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Kurve |0 (DE-588)4001165-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Kurve |0 (DE-588)4001165-3 |D s |
689 | 0 | 1 | |a Galois-Feld |0 (DE-588)4155896-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Algebraische Kurve |0 (DE-588)4001165-3 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-34252-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-45901-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511608766 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349953 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511608766 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511608766 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511608766 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176882132844544 |
---|---|
any_adam_object | |
author | Moreno, Carlos J. 1946- |
author_GND | (DE-588)142213543 |
author_facet | Moreno, Carlos J. 1946- |
author_role | aut |
author_sort | Moreno, Carlos J. 1946- |
author_variant | c j m cj cjm |
building | Verbundindex |
bvnumber | BV043940984 |
classification_rvk | SK 240 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511608766 (OCoLC)967600194 (DE-599)BVBBV043940984 |
dewey-full | 516.3/52 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/52 |
dewey-search | 516.3/52 |
dewey-sort | 3516.3 252 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511608766 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03001nmm a2200529zcb4500</leader><controlfield tag="001">BV043940984</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190426 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511608766</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-60876-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511608766</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511608766</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967600194</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940984</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/52</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Moreno, Carlos J.</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142213543</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic curves over finite fields</subfield><subfield code="c">Carlos Moreno</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 246 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">97</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this Tract Professor Moreno develops the theory of algebraic curves over finite fields, their zeta and L-functions, and, for the first time, the theory of algebraic geometric Goppa codes on algebraic curves. Amongst the applications considered are: the problem of counting the number of solutions of equations over finite fields; Bombieri's proof of the Reimann hypothesis for function fields, with consequences for the estimation of exponential sums in one variable; Goppa's theory of error-correcting codes constructed from linear systems on algebraic curves. There is also a new proof of the Tsfasman–Vladut–Zink theorem. The prerequisites needed to follow this book are few, and it can be used for graduate courses for mathematics students. Electrical engineers who need to understand the modern developments in the theory of error-correcting codes will also benefit from studying this work</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curves, Algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, Zeta</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Galois-Feld</subfield><subfield code="0">(DE-588)4155896-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Kurve</subfield><subfield code="0">(DE-588)4001165-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Kurve</subfield><subfield code="0">(DE-588)4001165-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Galois-Feld</subfield><subfield code="0">(DE-588)4155896-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Kurve</subfield><subfield code="0">(DE-588)4001165-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-34252-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-45901-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511608766</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349953</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511608766</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511608766</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511608766</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940984 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9780511608766 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349953 |
oclc_num | 967600194 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (ix, 246 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Moreno, Carlos J. 1946- Verfasser (DE-588)142213543 aut Algebraic curves over finite fields Carlos Moreno Cambridge Cambridge University Press 1990 1 Online-Ressource (ix, 246 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 97 In this Tract Professor Moreno develops the theory of algebraic curves over finite fields, their zeta and L-functions, and, for the first time, the theory of algebraic geometric Goppa codes on algebraic curves. Amongst the applications considered are: the problem of counting the number of solutions of equations over finite fields; Bombieri's proof of the Reimann hypothesis for function fields, with consequences for the estimation of exponential sums in one variable; Goppa's theory of error-correcting codes constructed from linear systems on algebraic curves. There is also a new proof of the Tsfasman–Vladut–Zink theorem. The prerequisites needed to follow this book are few, and it can be used for graduate courses for mathematics students. Electrical engineers who need to understand the modern developments in the theory of error-correcting codes will also benefit from studying this work Curves, Algebraic Algebraic fields Functions, Zeta Galois-Feld (DE-588)4155896-0 gnd rswk-swf Algebraische Kurve (DE-588)4001165-3 gnd rswk-swf Algebraische Kurve (DE-588)4001165-3 s Galois-Feld (DE-588)4155896-0 s DE-604 Erscheint auch als Druck-Ausgabe 978-0-521-34252-0 Erscheint auch als Druck-Ausgabe 978-0-521-45901-3 https://doi.org/10.1017/CBO9780511608766 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Moreno, Carlos J. 1946- Algebraic curves over finite fields Curves, Algebraic Algebraic fields Functions, Zeta Galois-Feld (DE-588)4155896-0 gnd Algebraische Kurve (DE-588)4001165-3 gnd |
subject_GND | (DE-588)4155896-0 (DE-588)4001165-3 |
title | Algebraic curves over finite fields |
title_auth | Algebraic curves over finite fields |
title_exact_search | Algebraic curves over finite fields |
title_full | Algebraic curves over finite fields Carlos Moreno |
title_fullStr | Algebraic curves over finite fields Carlos Moreno |
title_full_unstemmed | Algebraic curves over finite fields Carlos Moreno |
title_short | Algebraic curves over finite fields |
title_sort | algebraic curves over finite fields |
topic | Curves, Algebraic Algebraic fields Functions, Zeta Galois-Feld (DE-588)4155896-0 gnd Algebraische Kurve (DE-588)4001165-3 gnd |
topic_facet | Curves, Algebraic Algebraic fields Functions, Zeta Galois-Feld Algebraische Kurve |
url | https://doi.org/10.1017/CBO9780511608766 |
work_keys_str_mv | AT morenocarlosj algebraiccurvesoverfinitefields |