Clifford algebras and Dirac operators in harmonic analysis:
The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds and harmonic analysis. The authors show how algebra, geometry and differential equations all play a more fundamental role in Euclidean Fourier analysis than has been fully realized before. The...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1991
|
Schriftenreihe: | Cambridge studies in advanced mathematics
26 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds and harmonic analysis. The authors show how algebra, geometry and differential equations all play a more fundamental role in Euclidean Fourier analysis than has been fully realized before. Their presentation of the Euclidean theory then links up naturally with the representation theory of semi-simple Lie groups. By keeping the treatment relatively simple, the book will be accessible to graduate students, yet the more advanced reader will also appreciate the wealth of results and insights made available here |
Beschreibung: | 1 online resource (vi, 334 Seiten) |
ISBN: | 9780511611582 |
DOI: | 10.1017/CBO9780511611582 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940938 | ||
003 | DE-604 | ||
005 | 20230629 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1991 |||| o||u| ||||||eng d | ||
020 | |a 9780511611582 |c Online |9 978-0-511-61158-2 | ||
024 | 7 | |a 10.1017/CBO9780511611582 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511611582 | ||
035 | |a (OCoLC)849795323 | ||
035 | |a (DE-599)BVBBV043940938 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 512/.57 |2 20 | |
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a SK 700 |0 (DE-625)143253: |2 rvk | ||
100 | 1 | |a Gilbert, J. E. |e Verfasser |0 (DE-588)1294382241 |4 aut | |
245 | 1 | 0 | |a Clifford algebras and Dirac operators in harmonic analysis |c John E. Gilbert, Margaret A.M. Murray |
246 | 1 | 3 | |a Clifford Algebras & Dirac Operators in Harmonic Analysis |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1991 | |
300 | |a 1 online resource (vi, 334 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge studies in advanced mathematics |v 26 | |
520 | |a The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds and harmonic analysis. The authors show how algebra, geometry and differential equations all play a more fundamental role in Euclidean Fourier analysis than has been fully realized before. Their presentation of the Euclidean theory then links up naturally with the representation theory of semi-simple Lie groups. By keeping the treatment relatively simple, the book will be accessible to graduate students, yet the more advanced reader will also appreciate the wealth of results and insights made available here | ||
650 | 4 | |a Clifford algebras | |
650 | 4 | |a Dirac equation | |
650 | 4 | |a Harmonic analysis | |
650 | 0 | 7 | |a Clifford-Algebra |0 (DE-588)4199958-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dirac-Operator |0 (DE-588)4150118-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Clifford-Algebra |0 (DE-588)4199958-7 |D s |
689 | 0 | 1 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | 2 | |a Dirac-Operator |0 (DE-588)4150118-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Clifford-Algebra |0 (DE-588)4199958-7 |D s |
689 | 1 | 1 | |a Dirac-Operator |0 (DE-588)4150118-4 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Dirac-Operator |0 (DE-588)4150118-4 |D s |
689 | 2 | 1 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Clifford-Algebra |0 (DE-588)4199958-7 |D s |
689 | 3 | 1 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 3 | |5 DE-604 | |
700 | 1 | |a Murray, Margaret Anne Marie |d 1959- |e Sonstige |0 (DE-588)17350342X |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-34654-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-07198-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511611582 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349907 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511611582 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511611582 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511611582 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176882029035520 |
---|---|
any_adam_object | |
author | Gilbert, J. E. |
author_GND | (DE-588)1294382241 (DE-588)17350342X |
author_facet | Gilbert, J. E. |
author_role | aut |
author_sort | Gilbert, J. E. |
author_variant | j e g je jeg |
building | Verbundindex |
bvnumber | BV043940938 |
classification_rvk | SK 450 SK 600 SK 700 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511611582 (OCoLC)849795323 (DE-599)BVBBV043940938 |
dewey-full | 512/.57 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.57 |
dewey-search | 512/.57 |
dewey-sort | 3512 257 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511611582 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03465nmm a2200685zcb4500</leader><controlfield tag="001">BV043940938</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230629 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511611582</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-61158-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511611582</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511611582</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849795323</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940938</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.57</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 700</subfield><subfield code="0">(DE-625)143253:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gilbert, J. E.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1294382241</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Clifford algebras and Dirac operators in harmonic analysis</subfield><subfield code="c">John E. Gilbert, Margaret A.M. Murray</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Clifford Algebras & Dirac Operators in Harmonic Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vi, 334 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">26</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds and harmonic analysis. The authors show how algebra, geometry and differential equations all play a more fundamental role in Euclidean Fourier analysis than has been fully realized before. Their presentation of the Euclidean theory then links up naturally with the representation theory of semi-simple Lie groups. By keeping the treatment relatively simple, the book will be accessible to graduate students, yet the more advanced reader will also appreciate the wealth of results and insights made available here</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clifford algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dirac equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dirac-Operator</subfield><subfield code="0">(DE-588)4150118-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Dirac-Operator</subfield><subfield code="0">(DE-588)4150118-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Dirac-Operator</subfield><subfield code="0">(DE-588)4150118-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Dirac-Operator</subfield><subfield code="0">(DE-588)4150118-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murray, Margaret Anne Marie</subfield><subfield code="d">1959-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)17350342X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-34654-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-07198-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511611582</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349907</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511611582</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511611582</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511611582</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940938 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9780511611582 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349907 |
oclc_num | 849795323 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 online resource (vi, 334 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge studies in advanced mathematics |
spelling | Gilbert, J. E. Verfasser (DE-588)1294382241 aut Clifford algebras and Dirac operators in harmonic analysis John E. Gilbert, Margaret A.M. Murray Clifford Algebras & Dirac Operators in Harmonic Analysis Cambridge Cambridge University Press 1991 1 online resource (vi, 334 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 26 The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds and harmonic analysis. The authors show how algebra, geometry and differential equations all play a more fundamental role in Euclidean Fourier analysis than has been fully realized before. Their presentation of the Euclidean theory then links up naturally with the representation theory of semi-simple Lie groups. By keeping the treatment relatively simple, the book will be accessible to graduate students, yet the more advanced reader will also appreciate the wealth of results and insights made available here Clifford algebras Dirac equation Harmonic analysis Clifford-Algebra (DE-588)4199958-7 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Dirac-Operator (DE-588)4150118-4 gnd rswk-swf Clifford-Algebra (DE-588)4199958-7 s Harmonische Analyse (DE-588)4023453-8 s Dirac-Operator (DE-588)4150118-4 s DE-604 Murray, Margaret Anne Marie 1959- Sonstige (DE-588)17350342X oth Erscheint auch als Druck-Ausgabe 978-0-521-34654-2 Erscheint auch als Druck-Ausgabe 978-0-521-07198-7 https://doi.org/10.1017/CBO9780511611582 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Gilbert, J. E. Clifford algebras and Dirac operators in harmonic analysis Clifford algebras Dirac equation Harmonic analysis Clifford-Algebra (DE-588)4199958-7 gnd Harmonische Analyse (DE-588)4023453-8 gnd Dirac-Operator (DE-588)4150118-4 gnd |
subject_GND | (DE-588)4199958-7 (DE-588)4023453-8 (DE-588)4150118-4 |
title | Clifford algebras and Dirac operators in harmonic analysis |
title_alt | Clifford Algebras & Dirac Operators in Harmonic Analysis |
title_auth | Clifford algebras and Dirac operators in harmonic analysis |
title_exact_search | Clifford algebras and Dirac operators in harmonic analysis |
title_full | Clifford algebras and Dirac operators in harmonic analysis John E. Gilbert, Margaret A.M. Murray |
title_fullStr | Clifford algebras and Dirac operators in harmonic analysis John E. Gilbert, Margaret A.M. Murray |
title_full_unstemmed | Clifford algebras and Dirac operators in harmonic analysis John E. Gilbert, Margaret A.M. Murray |
title_short | Clifford algebras and Dirac operators in harmonic analysis |
title_sort | clifford algebras and dirac operators in harmonic analysis |
topic | Clifford algebras Dirac equation Harmonic analysis Clifford-Algebra (DE-588)4199958-7 gnd Harmonische Analyse (DE-588)4023453-8 gnd Dirac-Operator (DE-588)4150118-4 gnd |
topic_facet | Clifford algebras Dirac equation Harmonic analysis Clifford-Algebra Harmonische Analyse Dirac-Operator |
url | https://doi.org/10.1017/CBO9780511611582 |
work_keys_str_mv | AT gilbertje cliffordalgebrasanddiracoperatorsinharmonicanalysis AT murraymargaretannemarie cliffordalgebrasanddiracoperatorsinharmonicanalysis AT gilbertje cliffordalgebrasdiracoperatorsinharmonicanalysis AT murraymargaretannemarie cliffordalgebrasdiracoperatorsinharmonicanalysis |