Special functions: a graduate text
The subject of special functions is often presented as a collection of disparate results, which are rarely organised in a coherent way. This book answers the need for a different approach to the subject. The authors' main goals are to emphasise general unifying principles coherently and to prov...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2010
|
Schriftenreihe: | Cambridge studies in advanced mathematics
126 |
Schlagworte: | |
Online-Zugang: | DE-12 DE-92 DE-355 Volltext |
Zusammenfassung: | The subject of special functions is often presented as a collection of disparate results, which are rarely organised in a coherent way. This book answers the need for a different approach to the subject. The authors' main goals are to emphasise general unifying principles coherently and to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more, including chapters on discrete orthogonal polynomials and elliptic functions. The authors show how a very large part of the subject traces back to two equations - the hypergeometric equation and the confluent hypergeometric equation - and describe the various ways in which these equations are canonical and special. Providing ready access to theory and formulas, this book serves as an ideal graduate-level textbook as well as a convenient reference |
Beschreibung: | 1 online resource (ix, 456 Seiten) |
ISBN: | 9780511762543 |
DOI: | 10.1017/CBO9780511762543 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940851 | ||
003 | DE-604 | ||
005 | 20231215 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2010 |||| o||u| ||||||eng d | ||
020 | |a 9780511762543 |c Online |9 978-0-511-76254-3 | ||
024 | 7 | |a 10.1017/CBO9780511762543 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511762543 | ||
035 | |a (OCoLC)992836040 | ||
035 | |a (DE-599)BVBBV043940851 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 |a DE-83 | ||
082 | 0 | |a 515/.5 |2 22 | |
084 | |a SK 680 |0 (DE-625)143252: |2 rvk | ||
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
100 | 1 | |a Beals, Richard |d 1938- |e Verfasser |0 (DE-588)10795320X |4 aut | |
245 | 1 | 0 | |a Special functions |b a graduate text |c Richard Beals, Roderick Wong |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2010 | |
300 | |a 1 online resource (ix, 456 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 126 | |
505 | 8 | |a Orientation -- Gamma, beta, zeta -- Second-order differential equations -- Orthogonal polynomials -- Discrete orthogonal polynomials -- Confluent hypergeometric functions -- Cylinder functions -- Hypergeometric functions -- Spherical functions -- Asymptotics -- Elliptic functions | |
520 | |a The subject of special functions is often presented as a collection of disparate results, which are rarely organised in a coherent way. This book answers the need for a different approach to the subject. The authors' main goals are to emphasise general unifying principles coherently and to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more, including chapters on discrete orthogonal polynomials and elliptic functions. The authors show how a very large part of the subject traces back to two equations - the hypergeometric equation and the confluent hypergeometric equation - and describe the various ways in which these equations are canonical and special. Providing ready access to theory and formulas, this book serves as an ideal graduate-level textbook as well as a convenient reference | ||
650 | 4 | |a Functions, Special / Textbooks | |
650 | 0 | 7 | |a Spezielle Funktion |0 (DE-588)4182213-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Spezielle Funktion |0 (DE-588)4182213-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Wong, Roderick |d 1944- |e Sonstige |0 (DE-588)139039384 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-19797-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-47163-4 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 126 |w (DE-604)BV044781283 |9 126 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511762543 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029349821 | |
966 | e | |u https://doi.org/10.1017/CBO9780511762543 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511762543 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511762543 |l DE-355 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1808134606792163328 |
---|---|
adam_text | |
any_adam_object | |
author | Beals, Richard 1938- |
author_GND | (DE-588)10795320X (DE-588)139039384 |
author_facet | Beals, Richard 1938- |
author_role | aut |
author_sort | Beals, Richard 1938- |
author_variant | r b rb |
building | Verbundindex |
bvnumber | BV043940851 |
classification_rvk | SK 680 SK 180 |
collection | ZDB-20-CBO |
contents | Orientation -- Gamma, beta, zeta -- Second-order differential equations -- Orthogonal polynomials -- Discrete orthogonal polynomials -- Confluent hypergeometric functions -- Cylinder functions -- Hypergeometric functions -- Spherical functions -- Asymptotics -- Elliptic functions |
ctrlnum | (ZDB-20-CBO)CR9780511762543 (OCoLC)992836040 (DE-599)BVBBV043940851 |
dewey-full | 515/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.5 |
dewey-search | 515/.5 |
dewey-sort | 3515 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511762543 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV043940851</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231215</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511762543</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-76254-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511762543</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511762543</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992836040</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940851</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 680</subfield><subfield code="0">(DE-625)143252:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beals, Richard</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)10795320X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Special functions</subfield><subfield code="b">a graduate text</subfield><subfield code="c">Richard Beals, Roderick Wong</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 456 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">126</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Orientation -- Gamma, beta, zeta -- Second-order differential equations -- Orthogonal polynomials -- Discrete orthogonal polynomials -- Confluent hypergeometric functions -- Cylinder functions -- Hypergeometric functions -- Spherical functions -- Asymptotics -- Elliptic functions</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The subject of special functions is often presented as a collection of disparate results, which are rarely organised in a coherent way. This book answers the need for a different approach to the subject. The authors' main goals are to emphasise general unifying principles coherently and to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more, including chapters on discrete orthogonal polynomials and elliptic functions. The authors show how a very large part of the subject traces back to two equations - the hypergeometric equation and the confluent hypergeometric equation - and describe the various ways in which these equations are canonical and special. Providing ready access to theory and formulas, this book serves as an ideal graduate-level textbook as well as a convenient reference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, Special / Textbooks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spezielle Funktion</subfield><subfield code="0">(DE-588)4182213-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spezielle Funktion</subfield><subfield code="0">(DE-588)4182213-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wong, Roderick</subfield><subfield code="d">1944-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)139039384</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-19797-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-47163-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">126</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">126</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511762543</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349821</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511762543</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511762543</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511762543</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV043940851 |
illustrated | Not Illustrated |
indexdate | 2024-08-23T00:05:34Z |
institution | BVB |
isbn | 9780511762543 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349821 |
oclc_num | 992836040 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
physical | 1 online resource (ix, 456 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Beals, Richard 1938- Verfasser (DE-588)10795320X aut Special functions a graduate text Richard Beals, Roderick Wong Cambridge Cambridge University Press 2010 1 online resource (ix, 456 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 126 Orientation -- Gamma, beta, zeta -- Second-order differential equations -- Orthogonal polynomials -- Discrete orthogonal polynomials -- Confluent hypergeometric functions -- Cylinder functions -- Hypergeometric functions -- Spherical functions -- Asymptotics -- Elliptic functions The subject of special functions is often presented as a collection of disparate results, which are rarely organised in a coherent way. This book answers the need for a different approach to the subject. The authors' main goals are to emphasise general unifying principles coherently and to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more, including chapters on discrete orthogonal polynomials and elliptic functions. The authors show how a very large part of the subject traces back to two equations - the hypergeometric equation and the confluent hypergeometric equation - and describe the various ways in which these equations are canonical and special. Providing ready access to theory and formulas, this book serves as an ideal graduate-level textbook as well as a convenient reference Functions, Special / Textbooks Spezielle Funktion (DE-588)4182213-4 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Spezielle Funktion (DE-588)4182213-4 s DE-604 Wong, Roderick 1944- Sonstige (DE-588)139039384 oth Erscheint auch als Druck-Ausgabe 978-0-521-19797-7 Erscheint auch als Druck-Ausgabe 978-1-107-47163-4 Cambridge studies in advanced mathematics 126 (DE-604)BV044781283 126 https://doi.org/10.1017/CBO9780511762543 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Beals, Richard 1938- Special functions a graduate text Cambridge studies in advanced mathematics Orientation -- Gamma, beta, zeta -- Second-order differential equations -- Orthogonal polynomials -- Discrete orthogonal polynomials -- Confluent hypergeometric functions -- Cylinder functions -- Hypergeometric functions -- Spherical functions -- Asymptotics -- Elliptic functions Functions, Special / Textbooks Spezielle Funktion (DE-588)4182213-4 gnd |
subject_GND | (DE-588)4182213-4 (DE-588)4123623-3 |
title | Special functions a graduate text |
title_auth | Special functions a graduate text |
title_exact_search | Special functions a graduate text |
title_full | Special functions a graduate text Richard Beals, Roderick Wong |
title_fullStr | Special functions a graduate text Richard Beals, Roderick Wong |
title_full_unstemmed | Special functions a graduate text Richard Beals, Roderick Wong |
title_short | Special functions |
title_sort | special functions a graduate text |
title_sub | a graduate text |
topic | Functions, Special / Textbooks Spezielle Funktion (DE-588)4182213-4 gnd |
topic_facet | Functions, Special / Textbooks Spezielle Funktion Lehrbuch |
url | https://doi.org/10.1017/CBO9780511762543 |
volume_link | (DE-604)BV044781283 |
work_keys_str_mv | AT bealsrichard specialfunctionsagraduatetext AT wongroderick specialfunctionsagraduatetext |