Applied analysis of the Navier-Stokes equations:
The Navier–Stokes equations are a set of nonlinear partial differential equations comprising the fundamental dynamical description of fluid motion. They are applied routinely to problems in engineering, geophysics, astrophysics, and atmospheric science. This book is an introductory physical and math...
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Cambridge
Cambridge University Press
1995
|
Series: | Cambridge texts in applied mathematics
12 |
Subjects: | |
Online Access: | DE-12 DE-92 Volltext |
Summary: | The Navier–Stokes equations are a set of nonlinear partial differential equations comprising the fundamental dynamical description of fluid motion. They are applied routinely to problems in engineering, geophysics, astrophysics, and atmospheric science. This book is an introductory physical and mathematical presentation of the Navier–Stokes equations, focusing on unresolved questions of the regularity of solutions in three spatial dimensions, and the relation of these issues to the physical phenomenon of turbulent fluid motion. Intended for graduate students and researchers in applied mathematics and theoretical physics, results and techniques from nonlinear functional analysis are introduced as needed with an eye toward communicating the essential ideas behind the rigorous analyses |
Item Description: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Physical Description: | 1 online resource (xiii, 217 pages) |
ISBN: | 9780511608803 |
DOI: | 10.1017/CBO9780511608803 |
Staff View
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940768 | ||
003 | DE-604 | ||
005 | 20250423 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1995 xx o|||| 00||| eng d | ||
020 | |a 9780511608803 |c Online |9 978-0-511-60880-3 | ||
024 | 7 | |a 10.1017/CBO9780511608803 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511608803 | ||
035 | |a (OCoLC)850026854 | ||
035 | |a (DE-599)BVBBV043940768 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 532/.0527/01515353 |2 20 | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
100 | 1 | |a Doering, Charles R. |e Verfasser |0 (DE-588)1150545410 |4 aut | |
245 | 1 | 0 | |a Applied analysis of the Navier-Stokes equations |c Charles R. Doering and J.D. Gibbon |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1995 | |
300 | |a 1 online resource (xiii, 217 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge texts in applied mathematics |v 12 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a The Navier–Stokes equations are a set of nonlinear partial differential equations comprising the fundamental dynamical description of fluid motion. They are applied routinely to problems in engineering, geophysics, astrophysics, and atmospheric science. This book is an introductory physical and mathematical presentation of the Navier–Stokes equations, focusing on unresolved questions of the regularity of solutions in three spatial dimensions, and the relation of these issues to the physical phenomenon of turbulent fluid motion. Intended for graduate students and researchers in applied mathematics and theoretical physics, results and techniques from nonlinear functional analysis are introduced as needed with an eye toward communicating the essential ideas behind the rigorous analyses | ||
650 | 4 | |a Navier-Stokes equations | |
650 | 0 | 7 | |a Navier-Stokes-Gleichung |0 (DE-588)4041456-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Navier-Stokes-Gleichung |0 (DE-588)4041456-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Gibbon, J. D. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-44557-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-44568-9 |
830 | 0 | |a Cambridge texts in applied mathematics |v 12 |w (DE-604)BV046998082 |9 12 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511608803 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029349738 | |
966 | e | |u https://doi.org/10.1017/CBO9780511608803 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511608803 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Record in the Search Index
_version_ | 1830187140047175680 |
---|---|
adam_text | |
any_adam_object | |
author | Doering, Charles R. |
author_GND | (DE-588)1150545410 |
author_facet | Doering, Charles R. |
author_role | aut |
author_sort | Doering, Charles R. |
author_variant | c r d cr crd |
building | Verbundindex |
bvnumber | BV043940768 |
classification_rvk | SK 540 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511608803 (OCoLC)850026854 (DE-599)BVBBV043940768 |
dewey-full | 532/.0527/01515353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532/.0527/01515353 |
dewey-search | 532/.0527/01515353 |
dewey-sort | 3532 3527 71515353 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1017/CBO9780511608803 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV043940768</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250423</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1995 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511608803</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-60880-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511608803</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511608803</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850026854</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940768</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532/.0527/01515353</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Doering, Charles R.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1150545410</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied analysis of the Navier-Stokes equations</subfield><subfield code="c">Charles R. Doering and J.D. Gibbon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 217 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge texts in applied mathematics</subfield><subfield code="v">12</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Navier–Stokes equations are a set of nonlinear partial differential equations comprising the fundamental dynamical description of fluid motion. They are applied routinely to problems in engineering, geophysics, astrophysics, and atmospheric science. This book is an introductory physical and mathematical presentation of the Navier–Stokes equations, focusing on unresolved questions of the regularity of solutions in three spatial dimensions, and the relation of these issues to the physical phenomenon of turbulent fluid motion. Intended for graduate students and researchers in applied mathematics and theoretical physics, results and techniques from nonlinear functional analysis are introduced as needed with an eye toward communicating the essential ideas behind the rigorous analyses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Navier-Stokes equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Navier-Stokes-Gleichung</subfield><subfield code="0">(DE-588)4041456-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Navier-Stokes-Gleichung</subfield><subfield code="0">(DE-588)4041456-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gibbon, J. D.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-44557-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-44568-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge texts in applied mathematics</subfield><subfield code="v">12</subfield><subfield code="w">(DE-604)BV046998082</subfield><subfield code="9">12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511608803</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349738</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511608803</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511608803</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940768 |
illustrated | Not Illustrated |
indexdate | 2025-04-23T10:01:09Z |
institution | BVB |
isbn | 9780511608803 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349738 |
oclc_num | 850026854 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 217 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge texts in applied mathematics |
series2 | Cambridge texts in applied mathematics |
spelling | Doering, Charles R. Verfasser (DE-588)1150545410 aut Applied analysis of the Navier-Stokes equations Charles R. Doering and J.D. Gibbon Cambridge Cambridge University Press 1995 1 online resource (xiii, 217 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge texts in applied mathematics 12 Title from publisher's bibliographic system (viewed on 05 Oct 2015) The Navier–Stokes equations are a set of nonlinear partial differential equations comprising the fundamental dynamical description of fluid motion. They are applied routinely to problems in engineering, geophysics, astrophysics, and atmospheric science. This book is an introductory physical and mathematical presentation of the Navier–Stokes equations, focusing on unresolved questions of the regularity of solutions in three spatial dimensions, and the relation of these issues to the physical phenomenon of turbulent fluid motion. Intended for graduate students and researchers in applied mathematics and theoretical physics, results and techniques from nonlinear functional analysis are introduced as needed with an eye toward communicating the essential ideas behind the rigorous analyses Navier-Stokes equations Navier-Stokes-Gleichung (DE-588)4041456-5 gnd rswk-swf Navier-Stokes-Gleichung (DE-588)4041456-5 s 1\p DE-604 Gibbon, J. D. Sonstige oth Erscheint auch als Druckausgabe 978-0-521-44557-3 Erscheint auch als Druckausgabe 978-0-521-44568-9 Cambridge texts in applied mathematics 12 (DE-604)BV046998082 12 https://doi.org/10.1017/CBO9780511608803 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Doering, Charles R. Applied analysis of the Navier-Stokes equations Navier-Stokes equations Navier-Stokes-Gleichung (DE-588)4041456-5 gnd Cambridge texts in applied mathematics |
subject_GND | (DE-588)4041456-5 |
title | Applied analysis of the Navier-Stokes equations |
title_auth | Applied analysis of the Navier-Stokes equations |
title_exact_search | Applied analysis of the Navier-Stokes equations |
title_full | Applied analysis of the Navier-Stokes equations Charles R. Doering and J.D. Gibbon |
title_fullStr | Applied analysis of the Navier-Stokes equations Charles R. Doering and J.D. Gibbon |
title_full_unstemmed | Applied analysis of the Navier-Stokes equations Charles R. Doering and J.D. Gibbon |
title_short | Applied analysis of the Navier-Stokes equations |
title_sort | applied analysis of the navier stokes equations |
topic | Navier-Stokes equations Navier-Stokes-Gleichung (DE-588)4041456-5 gnd |
topic_facet | Navier-Stokes equations Navier-Stokes-Gleichung |
url | https://doi.org/10.1017/CBO9780511608803 |
volume_link | (DE-604)BV046998082 |
work_keys_str_mv | AT doeringcharlesr appliedanalysisofthenavierstokesequations AT gibbonjd appliedanalysisofthenavierstokesequations |