Wave motion:
Waves are a ubiquitous and important feature of the physical world, and throughout history it has been a major challenge to understand them. They can propagate on the surfaces of solids and of fluids; chemical waves control the beating of your heart; traffic jams move in waves down lanes crowded wit...
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Cambridge
Cambridge University Press
2000
|
Series: | Cambridge texts in applied mathematics
24 |
Subjects: | |
Online Access: | DE-12 DE-92 Volltext |
Summary: | Waves are a ubiquitous and important feature of the physical world, and throughout history it has been a major challenge to understand them. They can propagate on the surfaces of solids and of fluids; chemical waves control the beating of your heart; traffic jams move in waves down lanes crowded with vehicles. This introduction to the mathematics of wave phenomena is aimed at advanced undergraduate courses on waves for mathematicians, physicists or engineers. Some more advanced material on both linear and nonlinear waves is also included, thus making the book suitable for beginning graduate courses. The authors assume some familiarity with partial differential equations, integral transforms and asymptotic expansions as well as an acquaintance with fluid mechanics, elasticity and electromagnetism. The context and physics that underlie the mathematics is clearly explained at the beginning of each chapter. Worked examples and exercises are supplied throughout, with solutions available to teachers |
Item Description: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Physical Description: | 1 online resource (ix, 468 pages) |
ISBN: | 9780511841033 |
DOI: | 10.1017/CBO9780511841033 |
Staff View
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940758 | ||
003 | DE-604 | ||
005 | 20250423 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2000 xx o|||| 00||| eng d | ||
020 | |a 9780511841033 |c Online |9 978-0-511-84103-3 | ||
024 | 7 | |a 10.1017/CBO9780511841033 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511841033 | ||
035 | |a (OCoLC)967759608 | ||
035 | |a (DE-599)BVBBV043940758 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 530.12/4 |2 21 | |
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UF 5000 |0 (DE-625)145595: |2 rvk | ||
100 | 1 | |a Billingham, J. |d 1966- |e Verfasser |0 (DE-588)114630711X |4 aut | |
245 | 1 | 0 | |a Wave motion |c J. Billingham, A.C. King |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2000 | |
300 | |a 1 online resource (ix, 468 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge texts in applied mathematics |v 24 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Waves are a ubiquitous and important feature of the physical world, and throughout history it has been a major challenge to understand them. They can propagate on the surfaces of solids and of fluids; chemical waves control the beating of your heart; traffic jams move in waves down lanes crowded with vehicles. This introduction to the mathematics of wave phenomena is aimed at advanced undergraduate courses on waves for mathematicians, physicists or engineers. Some more advanced material on both linear and nonlinear waves is also included, thus making the book suitable for beginning graduate courses. The authors assume some familiarity with partial differential equations, integral transforms and asymptotic expansions as well as an acquaintance with fluid mechanics, elasticity and electromagnetism. The context and physics that underlie the mathematics is clearly explained at the beginning of each chapter. Worked examples and exercises are supplied throughout, with solutions available to teachers | ||
650 | 4 | |a Wave-motion, Theory of | |
650 | 0 | 7 | |a Wellenlehre |0 (DE-588)4322769-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wellenbewegung |0 (DE-588)4467376-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wellenausbreitung |0 (DE-588)4121912-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wellenbewegung |0 (DE-588)4467376-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Wellenlehre |0 (DE-588)4322769-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Wellenausbreitung |0 (DE-588)4121912-0 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a King, A. C. |d 1957-2005 |e Sonstige |0 (DE-588)136831540 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-63257-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-63450-2 |
830 | 0 | |a Cambridge texts in applied mathematics |v 24 |w (DE-604)BV046998082 |9 24 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511841033 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029349728 | |
966 | e | |u https://doi.org/10.1017/CBO9780511841033 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511841033 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Record in the Search Index
_version_ | 1830187139418030080 |
---|---|
adam_text | |
any_adam_object | |
author | Billingham, J. 1966- |
author_GND | (DE-588)114630711X (DE-588)136831540 |
author_facet | Billingham, J. 1966- |
author_role | aut |
author_sort | Billingham, J. 1966- |
author_variant | j b jb |
building | Verbundindex |
bvnumber | BV043940758 |
classification_rvk | SK 450 SK 950 UF 5000 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511841033 (OCoLC)967759608 (DE-599)BVBBV043940758 |
dewey-full | 530.12/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12/4 |
dewey-search | 530.12/4 |
dewey-sort | 3530.12 14 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1017/CBO9780511841033 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV043940758</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250423</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2000 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511841033</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-84103-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511841033</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511841033</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967759608</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940758</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12/4</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 5000</subfield><subfield code="0">(DE-625)145595:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Billingham, J.</subfield><subfield code="d">1966-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)114630711X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wave motion</subfield><subfield code="c">J. Billingham, A.C. King</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 468 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge texts in applied mathematics</subfield><subfield code="v">24</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Waves are a ubiquitous and important feature of the physical world, and throughout history it has been a major challenge to understand them. They can propagate on the surfaces of solids and of fluids; chemical waves control the beating of your heart; traffic jams move in waves down lanes crowded with vehicles. This introduction to the mathematics of wave phenomena is aimed at advanced undergraduate courses on waves for mathematicians, physicists or engineers. Some more advanced material on both linear and nonlinear waves is also included, thus making the book suitable for beginning graduate courses. The authors assume some familiarity with partial differential equations, integral transforms and asymptotic expansions as well as an acquaintance with fluid mechanics, elasticity and electromagnetism. The context and physics that underlie the mathematics is clearly explained at the beginning of each chapter. Worked examples and exercises are supplied throughout, with solutions available to teachers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave-motion, Theory of</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellenlehre</subfield><subfield code="0">(DE-588)4322769-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellenbewegung</subfield><subfield code="0">(DE-588)4467376-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellenausbreitung</subfield><subfield code="0">(DE-588)4121912-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wellenbewegung</subfield><subfield code="0">(DE-588)4467376-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wellenlehre</subfield><subfield code="0">(DE-588)4322769-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Wellenausbreitung</subfield><subfield code="0">(DE-588)4121912-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">King, A. C.</subfield><subfield code="d">1957-2005</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)136831540</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-63257-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-63450-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge texts in applied mathematics</subfield><subfield code="v">24</subfield><subfield code="w">(DE-604)BV046998082</subfield><subfield code="9">24</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511841033</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349728</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511841033</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511841033</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940758 |
illustrated | Not Illustrated |
indexdate | 2025-04-23T10:01:09Z |
institution | BVB |
isbn | 9780511841033 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349728 |
oclc_num | 967759608 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (ix, 468 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge texts in applied mathematics |
series2 | Cambridge texts in applied mathematics |
spelling | Billingham, J. 1966- Verfasser (DE-588)114630711X aut Wave motion J. Billingham, A.C. King Cambridge Cambridge University Press 2000 1 online resource (ix, 468 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge texts in applied mathematics 24 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Waves are a ubiquitous and important feature of the physical world, and throughout history it has been a major challenge to understand them. They can propagate on the surfaces of solids and of fluids; chemical waves control the beating of your heart; traffic jams move in waves down lanes crowded with vehicles. This introduction to the mathematics of wave phenomena is aimed at advanced undergraduate courses on waves for mathematicians, physicists or engineers. Some more advanced material on both linear and nonlinear waves is also included, thus making the book suitable for beginning graduate courses. The authors assume some familiarity with partial differential equations, integral transforms and asymptotic expansions as well as an acquaintance with fluid mechanics, elasticity and electromagnetism. The context and physics that underlie the mathematics is clearly explained at the beginning of each chapter. Worked examples and exercises are supplied throughout, with solutions available to teachers Wave-motion, Theory of Wellenlehre (DE-588)4322769-7 gnd rswk-swf Wellenbewegung (DE-588)4467376-0 gnd rswk-swf Wellenausbreitung (DE-588)4121912-0 gnd rswk-swf Wellenbewegung (DE-588)4467376-0 s 1\p DE-604 Wellenlehre (DE-588)4322769-7 s 2\p DE-604 Wellenausbreitung (DE-588)4121912-0 s 3\p DE-604 King, A. C. 1957-2005 Sonstige (DE-588)136831540 oth Erscheint auch als Druckausgabe 978-0-521-63257-7 Erscheint auch als Druckausgabe 978-0-521-63450-2 Cambridge texts in applied mathematics 24 (DE-604)BV046998082 24 https://doi.org/10.1017/CBO9780511841033 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Billingham, J. 1966- Wave motion Wave-motion, Theory of Wellenlehre (DE-588)4322769-7 gnd Wellenbewegung (DE-588)4467376-0 gnd Wellenausbreitung (DE-588)4121912-0 gnd Cambridge texts in applied mathematics |
subject_GND | (DE-588)4322769-7 (DE-588)4467376-0 (DE-588)4121912-0 |
title | Wave motion |
title_auth | Wave motion |
title_exact_search | Wave motion |
title_full | Wave motion J. Billingham, A.C. King |
title_fullStr | Wave motion J. Billingham, A.C. King |
title_full_unstemmed | Wave motion J. Billingham, A.C. King |
title_short | Wave motion |
title_sort | wave motion |
topic | Wave-motion, Theory of Wellenlehre (DE-588)4322769-7 gnd Wellenbewegung (DE-588)4467376-0 gnd Wellenausbreitung (DE-588)4121912-0 gnd |
topic_facet | Wave-motion, Theory of Wellenlehre Wellenbewegung Wellenausbreitung |
url | https://doi.org/10.1017/CBO9780511841033 |
volume_link | (DE-604)BV046998082 |
work_keys_str_mv | AT billinghamj wavemotion AT kingac wavemotion |