Representations of finite groups of Lie type:
This book is based on a graduate course taught at the University of Paris. The authors aim to treat the basic theory of representations of finite groups of Lie type, such as linear, unitary, orthogonal and symplectic groups. They emphasise the Curtis–Alvis duality map and Mackey's theorem and t...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1991
|
Schriftenreihe: | London Mathematical Society student texts
21 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | This book is based on a graduate course taught at the University of Paris. The authors aim to treat the basic theory of representations of finite groups of Lie type, such as linear, unitary, orthogonal and symplectic groups. They emphasise the Curtis–Alvis duality map and Mackey's theorem and the results that can be deduced from it. They also discuss Deligne–Lusztig induction. This will be the first elementary treatment of this material in book form and will be welcomed by beginning graduate students in algebra |
Beschreibung: | 1 Online-Ressource (159 Seiten) |
ISBN: | 9781139172417 |
DOI: | 10.1017/CBO9781139172417 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940669 | ||
003 | DE-604 | ||
005 | 20190529 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1991 |||| o||u| ||||||eng d | ||
020 | |a 9781139172417 |c Online |9 978-1-139-17241-7 | ||
024 | 7 | |a 10.1017/CBO9781139172417 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139172417 | ||
035 | |a (OCoLC)967759544 | ||
035 | |a (DE-599)BVBBV043940669 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 512/.55 |2 20 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Digne, François |e Verfasser |0 (DE-588)1130806057 |4 aut | |
245 | 1 | 0 | |a Representations of finite groups of Lie type |c François Digne and Jean Michel |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1991 | |
300 | |a 1 Online-Ressource (159 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society student texts |v 21 | |
520 | |a This book is based on a graduate course taught at the University of Paris. The authors aim to treat the basic theory of representations of finite groups of Lie type, such as linear, unitary, orthogonal and symplectic groups. They emphasise the Curtis–Alvis duality map and Mackey's theorem and the results that can be deduced from it. They also discuss Deligne–Lusztig induction. This will be the first elementary treatment of this material in book form and will be welcomed by beginning graduate students in algebra | ||
650 | 4 | |a Lie groups | |
650 | 4 | |a Representations of groups | |
650 | 0 | 7 | |a Lie-Typ-Gruppe |0 (DE-588)4167650-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Endliche Gruppe |0 (DE-588)4014651-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Endliche Gruppe |0 (DE-588)4014651-0 |D s |
689 | 0 | 1 | |a Lie-Typ-Gruppe |0 (DE-588)4167650-6 |D s |
689 | 0 | 2 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Michel, Jean |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1050184939 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-40117-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-40648-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139172417 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349639 | ||
966 | e | |u https://doi.org/10.1017/CBO9781139172417 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139172417 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139172417 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176881489018880 |
---|---|
any_adam_object | |
author | Digne, François Michel, Jean ca. 20./21. Jh |
author_GND | (DE-588)1130806057 (DE-588)1050184939 |
author_facet | Digne, François Michel, Jean ca. 20./21. Jh |
author_role | aut aut |
author_sort | Digne, François |
author_variant | f d fd j m jm |
building | Verbundindex |
bvnumber | BV043940669 |
classification_rvk | SK 340 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139172417 (OCoLC)967759544 (DE-599)BVBBV043940669 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139172417 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02753nmm a2200529zcb4500</leader><controlfield tag="001">BV043940669</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190529 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139172417</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-17241-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139172417</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139172417</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967759544</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940669</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Digne, François</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1130806057</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representations of finite groups of Lie type</subfield><subfield code="c">François Digne and Jean Michel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (159 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">21</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is based on a graduate course taught at the University of Paris. The authors aim to treat the basic theory of representations of finite groups of Lie type, such as linear, unitary, orthogonal and symplectic groups. They emphasise the Curtis–Alvis duality map and Mackey's theorem and the results that can be deduced from it. They also discuss Deligne–Lusztig induction. This will be the first elementary treatment of this material in book form and will be welcomed by beginning graduate students in algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Typ-Gruppe</subfield><subfield code="0">(DE-588)4167650-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Typ-Gruppe</subfield><subfield code="0">(DE-588)4167650-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Michel, Jean</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1050184939</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-40117-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-40648-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139172417</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349639</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139172417</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139172417</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139172417</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940669 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9781139172417 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349639 |
oclc_num | 967759544 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (159 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society student texts |
spelling | Digne, François Verfasser (DE-588)1130806057 aut Representations of finite groups of Lie type François Digne and Jean Michel Cambridge Cambridge University Press 1991 1 Online-Ressource (159 Seiten) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society student texts 21 This book is based on a graduate course taught at the University of Paris. The authors aim to treat the basic theory of representations of finite groups of Lie type, such as linear, unitary, orthogonal and symplectic groups. They emphasise the Curtis–Alvis duality map and Mackey's theorem and the results that can be deduced from it. They also discuss Deligne–Lusztig induction. This will be the first elementary treatment of this material in book form and will be welcomed by beginning graduate students in algebra Lie groups Representations of groups Lie-Typ-Gruppe (DE-588)4167650-6 gnd rswk-swf Darstellung Mathematik (DE-588)4128289-9 gnd rswk-swf Endliche Gruppe (DE-588)4014651-0 gnd rswk-swf Endliche Gruppe (DE-588)4014651-0 s Lie-Typ-Gruppe (DE-588)4167650-6 s Darstellung Mathematik (DE-588)4128289-9 s DE-604 Michel, Jean ca. 20./21. Jh. Verfasser (DE-588)1050184939 aut Erscheint auch als Druck-Ausgabe 978-0-521-40117-3 Erscheint auch als Druck-Ausgabe 978-0-521-40648-2 https://doi.org/10.1017/CBO9781139172417 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Digne, François Michel, Jean ca. 20./21. Jh Representations of finite groups of Lie type Lie groups Representations of groups Lie-Typ-Gruppe (DE-588)4167650-6 gnd Darstellung Mathematik (DE-588)4128289-9 gnd Endliche Gruppe (DE-588)4014651-0 gnd |
subject_GND | (DE-588)4167650-6 (DE-588)4128289-9 (DE-588)4014651-0 |
title | Representations of finite groups of Lie type |
title_auth | Representations of finite groups of Lie type |
title_exact_search | Representations of finite groups of Lie type |
title_full | Representations of finite groups of Lie type François Digne and Jean Michel |
title_fullStr | Representations of finite groups of Lie type François Digne and Jean Michel |
title_full_unstemmed | Representations of finite groups of Lie type François Digne and Jean Michel |
title_short | Representations of finite groups of Lie type |
title_sort | representations of finite groups of lie type |
topic | Lie groups Representations of groups Lie-Typ-Gruppe (DE-588)4167650-6 gnd Darstellung Mathematik (DE-588)4128289-9 gnd Endliche Gruppe (DE-588)4014651-0 gnd |
topic_facet | Lie groups Representations of groups Lie-Typ-Gruppe Darstellung Mathematik Endliche Gruppe |
url | https://doi.org/10.1017/CBO9781139172417 |
work_keys_str_mv | AT dignefrancois representationsoffinitegroupsoflietype AT micheljean representationsoffinitegroupsoflietype |