Mathematical modelling in one dimension: an introduction via difference and differential equations
Mathematical Modelling in One Dimension demonstrates the universality of mathematical techniques through a wide variety of applications. Learn how the same mathematical idea governs loan repayments, drug accumulation in tissues or growth of a population, or how the same argument can be used to find...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2013
|
Schriftenreihe: | AIMS library series
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Mathematical Modelling in One Dimension demonstrates the universality of mathematical techniques through a wide variety of applications. Learn how the same mathematical idea governs loan repayments, drug accumulation in tissues or growth of a population, or how the same argument can be used to find the trajectory of a dog pursuing a hare, the trajectory of a self-guided missile or the shape of a satellite dish. The author places equal importance on difference and differential equations, showing how they complement and intertwine in describing natural phenomena |
Beschreibung: | Title from publisher's bibliographic system (viewed on 01 Feb 2016) |
Beschreibung: | 1 online resource (x, 110 pages) |
ISBN: | 9781139565370 |
DOI: | 10.1017/CBO9781139565370 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043940645 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2013 |||| o||u| ||||||eng d | ||
020 | |a 9781139565370 |c Online |9 978-1-139-56537-0 | ||
024 | 7 | |a 10.1017/CBO9781139565370 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139565370 | ||
035 | |a (OCoLC)992905245 | ||
035 | |a (DE-599)BVBBV043940645 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 511/.8 |2 23 | |
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
084 | |a SK 580 |0 (DE-625)143247: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Banasiak, J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematical modelling in one dimension |b an introduction via difference and differential equations |c Jacek Banasiak |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2013 | |
300 | |a 1 online resource (x, 110 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a AIMS library series | |
500 | |a Title from publisher's bibliographic system (viewed on 01 Feb 2016) | ||
505 | 8 | |a Mathematical toolbox -- Basic difference equations models and their analysis -- Basic differential equations models -- Qualitative theory for a single equation -- From discrete to continuous models and back | |
520 | |a Mathematical Modelling in One Dimension demonstrates the universality of mathematical techniques through a wide variety of applications. Learn how the same mathematical idea governs loan repayments, drug accumulation in tissues or growth of a population, or how the same argument can be used to find the trajectory of a dog pursuing a hare, the trajectory of a self-guided missile or the shape of a satellite dish. The author places equal importance on difference and differential equations, showing how they complement and intertwine in describing natural phenomena | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Mathematical models | |
650 | 0 | 7 | |a Dimension 1 |0 (DE-588)4323094-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differenzengleichung |0 (DE-588)4012264-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Modellierung |0 (DE-588)7651795-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematische Modellierung |0 (DE-588)7651795-0 |D s |
689 | 0 | 1 | |a Dimension 1 |0 (DE-588)4323094-5 |D s |
689 | 0 | 2 | |a Differenzengleichung |0 (DE-588)4012264-5 |D s |
689 | 0 | 3 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-65468-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139565370 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349615 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139565370 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139565370 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176881440784384 |
---|---|
any_adam_object | |
author | Banasiak, J. |
author_facet | Banasiak, J. |
author_role | aut |
author_sort | Banasiak, J. |
author_variant | j b jb |
building | Verbundindex |
bvnumber | BV043940645 |
classification_rvk | SK 520 SK 580 SK 950 |
collection | ZDB-20-CBO |
contents | Mathematical toolbox -- Basic difference equations models and their analysis -- Basic differential equations models -- Qualitative theory for a single equation -- From discrete to continuous models and back |
ctrlnum | (ZDB-20-CBO)CR9781139565370 (OCoLC)992905245 (DE-599)BVBBV043940645 |
dewey-full | 511/.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.8 |
dewey-search | 511/.8 |
dewey-sort | 3511 18 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139565370 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03115nmm a2200577zc 4500</leader><controlfield tag="001">BV043940645</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139565370</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-56537-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139565370</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139565370</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992905245</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940645</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 580</subfield><subfield code="0">(DE-625)143247:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Banasiak, J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical modelling in one dimension</subfield><subfield code="b">an introduction via difference and differential equations</subfield><subfield code="c">Jacek Banasiak</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 110 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">AIMS library series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 01 Feb 2016)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Mathematical toolbox -- Basic difference equations models and their analysis -- Basic differential equations models -- Qualitative theory for a single equation -- From discrete to continuous models and back</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mathematical Modelling in One Dimension demonstrates the universality of mathematical techniques through a wide variety of applications. Learn how the same mathematical idea governs loan repayments, drug accumulation in tissues or growth of a population, or how the same argument can be used to find the trajectory of a dog pursuing a hare, the trajectory of a self-guided missile or the shape of a satellite dish. The author places equal importance on difference and differential equations, showing how they complement and intertwine in describing natural phenomena</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 1</subfield><subfield code="0">(DE-588)4323094-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzengleichung</subfield><subfield code="0">(DE-588)4012264-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Modellierung</subfield><subfield code="0">(DE-588)7651795-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Modellierung</subfield><subfield code="0">(DE-588)7651795-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 1</subfield><subfield code="0">(DE-588)4323094-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Differenzengleichung</subfield><subfield code="0">(DE-588)4012264-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-65468-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139565370</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349615</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139565370</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139565370</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940645 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9781139565370 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349615 |
oclc_num | 992905245 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (x, 110 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge University Press |
record_format | marc |
series2 | AIMS library series |
spelling | Banasiak, J. Verfasser aut Mathematical modelling in one dimension an introduction via difference and differential equations Jacek Banasiak Cambridge Cambridge University Press 2013 1 online resource (x, 110 pages) txt rdacontent c rdamedia cr rdacarrier AIMS library series Title from publisher's bibliographic system (viewed on 01 Feb 2016) Mathematical toolbox -- Basic difference equations models and their analysis -- Basic differential equations models -- Qualitative theory for a single equation -- From discrete to continuous models and back Mathematical Modelling in One Dimension demonstrates the universality of mathematical techniques through a wide variety of applications. Learn how the same mathematical idea governs loan repayments, drug accumulation in tissues or growth of a population, or how the same argument can be used to find the trajectory of a dog pursuing a hare, the trajectory of a self-guided missile or the shape of a satellite dish. The author places equal importance on difference and differential equations, showing how they complement and intertwine in describing natural phenomena Mathematisches Modell Mathematical models Dimension 1 (DE-588)4323094-5 gnd rswk-swf Differenzengleichung (DE-588)4012264-5 gnd rswk-swf Mathematische Modellierung (DE-588)7651795-0 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Mathematische Modellierung (DE-588)7651795-0 s Dimension 1 (DE-588)4323094-5 s Differenzengleichung (DE-588)4012264-5 s Differentialgleichung (DE-588)4012249-9 s 1\p DE-604 Erscheint auch als Druckausgabe 978-1-107-65468-6 https://doi.org/10.1017/CBO9781139565370 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Banasiak, J. Mathematical modelling in one dimension an introduction via difference and differential equations Mathematical toolbox -- Basic difference equations models and their analysis -- Basic differential equations models -- Qualitative theory for a single equation -- From discrete to continuous models and back Mathematisches Modell Mathematical models Dimension 1 (DE-588)4323094-5 gnd Differenzengleichung (DE-588)4012264-5 gnd Mathematische Modellierung (DE-588)7651795-0 gnd Differentialgleichung (DE-588)4012249-9 gnd |
subject_GND | (DE-588)4323094-5 (DE-588)4012264-5 (DE-588)7651795-0 (DE-588)4012249-9 |
title | Mathematical modelling in one dimension an introduction via difference and differential equations |
title_auth | Mathematical modelling in one dimension an introduction via difference and differential equations |
title_exact_search | Mathematical modelling in one dimension an introduction via difference and differential equations |
title_full | Mathematical modelling in one dimension an introduction via difference and differential equations Jacek Banasiak |
title_fullStr | Mathematical modelling in one dimension an introduction via difference and differential equations Jacek Banasiak |
title_full_unstemmed | Mathematical modelling in one dimension an introduction via difference and differential equations Jacek Banasiak |
title_short | Mathematical modelling in one dimension |
title_sort | mathematical modelling in one dimension an introduction via difference and differential equations |
title_sub | an introduction via difference and differential equations |
topic | Mathematisches Modell Mathematical models Dimension 1 (DE-588)4323094-5 gnd Differenzengleichung (DE-588)4012264-5 gnd Mathematische Modellierung (DE-588)7651795-0 gnd Differentialgleichung (DE-588)4012249-9 gnd |
topic_facet | Mathematisches Modell Mathematical models Dimension 1 Differenzengleichung Mathematische Modellierung Differentialgleichung |
url | https://doi.org/10.1017/CBO9781139565370 |
work_keys_str_mv | AT banasiakj mathematicalmodellinginonedimensionanintroductionviadifferenceanddifferentialequations |