Model selection and model averaging:

Given a data set, you can fit thousands of models at the push of a button, but how do you choose the best? With so many candidate models, overfitting is a real danger. Is the monkey who typed Hamlet actually a good writer? Choosing a model is central to all statistical work with data. We have seen r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Claeskens, Gerda 1973- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2008
Schriftenreihe:Cambridge series on statistical and probabilistic mathematics 27
Schlagworte:
Online-Zugang:DE-12
DE-92
Volltext
Zusammenfassung:Given a data set, you can fit thousands of models at the push of a button, but how do you choose the best? With so many candidate models, overfitting is a real danger. Is the monkey who typed Hamlet actually a good writer? Choosing a model is central to all statistical work with data. We have seen rapid advances in model fitting and in the theoretical understanding of model selection, yet this book is the first to synthesize research and practice from this active field. Model choice criteria are explained, discussed and compared, including the AIC, BIC, DIC and FIC. The uncertainties involved with model selection are tackled, with discussions of frequentist and Bayesian methods; model averaging schemes are presented. Real-data examples are complemented by derivations providing deeper insight into the methodology, and instructive exercises build familiarity with the methods. The companion website features Data sets and R code
Beschreibung:Title from publisher's bibliographic system (viewed on 05 Oct 2015)
Beschreibung:1 online resource (xvii, 312 pages)
ISBN:9780511790485
DOI:10.1017/CBO9780511790485