Noncommutative mathematics for quantum systems:
Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part p...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2016
|
Schriftenreihe: | Cambridge IISc series
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physics and operator algebras |
Beschreibung: | Title from publisher's bibliographic system (viewed on 01 Jan 2016) |
Beschreibung: | 1 online resource (xviii, 180 pages) |
ISBN: | 9781316562857 |
DOI: | 10.1017/CBO9781316562857 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043940421 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781316562857 |c Online |9 978-1-316-56285-7 | ||
024 | 7 | |a 10.1017/CBO9781316562857 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316562857 | ||
035 | |a (OCoLC)967600821 | ||
035 | |a (DE-599)BVBBV043940421 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 530.13/3 |2 23 | |
084 | |a UK 1200 |0 (DE-625)145792: |2 rvk | ||
100 | 1 | |a Franz, Uwe |e Verfasser |4 aut | |
245 | 1 | 0 | |a Noncommutative mathematics for quantum systems |c Uwe Franz, Adam Skalski |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2016 | |
300 | |a 1 online resource (xviii, 180 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge IISc series | |
500 | |a Title from publisher's bibliographic system (viewed on 01 Jan 2016) | ||
520 | |a Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physics and operator algebras | ||
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Probabilities | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Potential theory (Mathematics) | |
650 | 0 | 7 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtkommutative Wahrscheinlichkeit |0 (DE-588)4362758-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |D s |
689 | 0 | 1 | |a Nichtkommutative Wahrscheinlichkeit |0 (DE-588)4362758-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Skalski, Adam |d 1978- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-14805-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781316562857 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349391 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781316562857 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316562857 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880922787840 |
---|---|
any_adam_object | |
author | Franz, Uwe |
author_facet | Franz, Uwe |
author_role | aut |
author_sort | Franz, Uwe |
author_variant | u f uf |
building | Verbundindex |
bvnumber | BV043940421 |
classification_rvk | UK 1200 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316562857 (OCoLC)967600821 (DE-599)BVBBV043940421 |
dewey-full | 530.13/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.13/3 |
dewey-search | 530.13/3 |
dewey-sort | 3530.13 13 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1017/CBO9781316562857 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03151nmm a2200529zc 4500</leader><controlfield tag="001">BV043940421</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316562857</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-56285-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781316562857</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316562857</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967600821</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940421</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.13/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1200</subfield><subfield code="0">(DE-625)145792:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Franz, Uwe</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Noncommutative mathematics for quantum systems</subfield><subfield code="c">Uwe Franz, Adam Skalski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xviii, 180 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge IISc series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 01 Jan 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physics and operator algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential theory (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtkommutative Wahrscheinlichkeit</subfield><subfield code="0">(DE-588)4362758-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtkommutative Wahrscheinlichkeit</subfield><subfield code="0">(DE-588)4362758-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skalski, Adam</subfield><subfield code="d">1978-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-14805-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781316562857</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349391</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316562857</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316562857</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940421 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9781316562857 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349391 |
oclc_num | 967600821 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xviii, 180 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge IISc series |
spelling | Franz, Uwe Verfasser aut Noncommutative mathematics for quantum systems Uwe Franz, Adam Skalski Cambridge Cambridge University Press 2016 1 online resource (xviii, 180 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge IISc series Title from publisher's bibliographic system (viewed on 01 Jan 2016) Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physics and operator algebras Quantentheorie Probabilities Quantum theory Potential theory (Mathematics) Quantenmechanisches System (DE-588)4300046-0 gnd rswk-swf Nichtkommutative Wahrscheinlichkeit (DE-588)4362758-4 gnd rswk-swf Quantenmechanisches System (DE-588)4300046-0 s Nichtkommutative Wahrscheinlichkeit (DE-588)4362758-4 s 1\p DE-604 Skalski, Adam 1978- Sonstige oth Erscheint auch als Druckausgabe 978-1-107-14805-5 https://doi.org/10.1017/CBO9781316562857 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Franz, Uwe Noncommutative mathematics for quantum systems Quantentheorie Probabilities Quantum theory Potential theory (Mathematics) Quantenmechanisches System (DE-588)4300046-0 gnd Nichtkommutative Wahrscheinlichkeit (DE-588)4362758-4 gnd |
subject_GND | (DE-588)4300046-0 (DE-588)4362758-4 |
title | Noncommutative mathematics for quantum systems |
title_auth | Noncommutative mathematics for quantum systems |
title_exact_search | Noncommutative mathematics for quantum systems |
title_full | Noncommutative mathematics for quantum systems Uwe Franz, Adam Skalski |
title_fullStr | Noncommutative mathematics for quantum systems Uwe Franz, Adam Skalski |
title_full_unstemmed | Noncommutative mathematics for quantum systems Uwe Franz, Adam Skalski |
title_short | Noncommutative mathematics for quantum systems |
title_sort | noncommutative mathematics for quantum systems |
topic | Quantentheorie Probabilities Quantum theory Potential theory (Mathematics) Quantenmechanisches System (DE-588)4300046-0 gnd Nichtkommutative Wahrscheinlichkeit (DE-588)4362758-4 gnd |
topic_facet | Quantentheorie Probabilities Quantum theory Potential theory (Mathematics) Quantenmechanisches System Nichtkommutative Wahrscheinlichkeit |
url | https://doi.org/10.1017/CBO9781316562857 |
work_keys_str_mv | AT franzuwe noncommutativemathematicsforquantumsystems AT skalskiadam noncommutativemathematicsforquantumsystems |