Regular and irregular holonomic D-modules:
D-module theory is essentially the algebraic study of systems of linear partial differential equations. This book, the first devoted specifically to holonomic D-modules, provides a unified treatment of both regular and irregular D-modules. The authors begin by recalling the main results of the theor...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2016
|
Schriftenreihe: | London Mathematical Society lecture note series
433 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | D-module theory is essentially the algebraic study of systems of linear partial differential equations. This book, the first devoted specifically to holonomic D-modules, provides a unified treatment of both regular and irregular D-modules. The authors begin by recalling the main results of the theory of indsheaves and subanalytic sheaves, explaining in detail the operations on D-modules and their tempered holomorphic solutions. As an application, they obtain the Riemann–Hilbert correspondence for regular holonomic D-modules. In the second part of the book the authors do the same for the sheaf of enhanced tempered solutions of (not necessarily regular) holonomic D-modules. Originating from a series of lectures given at the Institut des Hautes Études Scientifiques in Paris, this book is addressed to graduate students and researchers familiar with the language of sheaves and D-modules, in the derived sense |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 May 2016) |
Beschreibung: | 1 online resource (vi, 111 pages) |
ISBN: | 9781316675625 |
DOI: | 10.1017/CBO9781316675625 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940285 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781316675625 |c Online |9 978-1-316-67562-5 | ||
024 | 7 | |a 10.1017/CBO9781316675625 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316675625 | ||
035 | |a (OCoLC)967678594 | ||
035 | |a (DE-599)BVBBV043940285 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 514/.23 |2 23 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
100 | 1 | |a Kashiwara, Masaki |d 1947- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Regular and irregular holonomic D-modules |c Masaki Kashiwara, Pierre Schapira |
246 | 1 | 3 | |a Regular & Irregular Holonomic D-Modules |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2016 | |
300 | |a 1 online resource (vi, 111 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 433 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 May 2016) | ||
520 | |a D-module theory is essentially the algebraic study of systems of linear partial differential equations. This book, the first devoted specifically to holonomic D-modules, provides a unified treatment of both regular and irregular D-modules. The authors begin by recalling the main results of the theory of indsheaves and subanalytic sheaves, explaining in detail the operations on D-modules and their tempered holomorphic solutions. As an application, they obtain the Riemann–Hilbert correspondence for regular holonomic D-modules. In the second part of the book the authors do the same for the sheaf of enhanced tempered solutions of (not necessarily regular) holonomic D-modules. Originating from a series of lectures given at the Institut des Hautes Études Scientifiques in Paris, this book is addressed to graduate students and researchers familiar with the language of sheaves and D-modules, in the derived sense | ||
650 | 4 | |a D-modules | |
650 | 4 | |a Modules (Algebra) | |
650 | 4 | |a Sheaf theory | |
650 | 4 | |a Geometry, Algebraic | |
650 | 0 | 7 | |a D-Modul |0 (DE-588)4305548-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a D-Modul |0 (DE-588)4305548-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Schapira, Pierre |d 1943- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-316-61345-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781316675625 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349255 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781316675625 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316675625 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880632332288 |
---|---|
any_adam_object | |
author | Kashiwara, Masaki 1947- |
author_facet | Kashiwara, Masaki 1947- |
author_role | aut |
author_sort | Kashiwara, Masaki 1947- |
author_variant | m k mk |
building | Verbundindex |
bvnumber | BV043940285 |
classification_rvk | SI 320 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316675625 (OCoLC)967678594 (DE-599)BVBBV043940285 |
dewey-full | 514/.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.23 |
dewey-search | 514/.23 |
dewey-sort | 3514 223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781316675625 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02914nmm a2200517zcb4500</leader><controlfield tag="001">BV043940285</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316675625</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-67562-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781316675625</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316675625</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967678594</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940285</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.23</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kashiwara, Masaki</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regular and irregular holonomic D-modules</subfield><subfield code="c">Masaki Kashiwara, Pierre Schapira</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Regular & Irregular Holonomic D-Modules</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vi, 111 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">433</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 May 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">D-module theory is essentially the algebraic study of systems of linear partial differential equations. This book, the first devoted specifically to holonomic D-modules, provides a unified treatment of both regular and irregular D-modules. The authors begin by recalling the main results of the theory of indsheaves and subanalytic sheaves, explaining in detail the operations on D-modules and their tempered holomorphic solutions. As an application, they obtain the Riemann–Hilbert correspondence for regular holonomic D-modules. In the second part of the book the authors do the same for the sheaf of enhanced tempered solutions of (not necessarily regular) holonomic D-modules. Originating from a series of lectures given at the Institut des Hautes Études Scientifiques in Paris, this book is addressed to graduate students and researchers familiar with the language of sheaves and D-modules, in the derived sense</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">D-modules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modules (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sheaf theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">D-Modul</subfield><subfield code="0">(DE-588)4305548-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">D-Modul</subfield><subfield code="0">(DE-588)4305548-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schapira, Pierre</subfield><subfield code="d">1943-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-316-61345-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781316675625</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349255</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316675625</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316675625</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940285 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9781316675625 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349255 |
oclc_num | 967678594 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (vi, 111 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Kashiwara, Masaki 1947- Verfasser aut Regular and irregular holonomic D-modules Masaki Kashiwara, Pierre Schapira Regular & Irregular Holonomic D-Modules Cambridge Cambridge University Press 2016 1 online resource (vi, 111 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 433 Title from publisher's bibliographic system (viewed on 05 May 2016) D-module theory is essentially the algebraic study of systems of linear partial differential equations. This book, the first devoted specifically to holonomic D-modules, provides a unified treatment of both regular and irregular D-modules. The authors begin by recalling the main results of the theory of indsheaves and subanalytic sheaves, explaining in detail the operations on D-modules and their tempered holomorphic solutions. As an application, they obtain the Riemann–Hilbert correspondence for regular holonomic D-modules. In the second part of the book the authors do the same for the sheaf of enhanced tempered solutions of (not necessarily regular) holonomic D-modules. Originating from a series of lectures given at the Institut des Hautes Études Scientifiques in Paris, this book is addressed to graduate students and researchers familiar with the language of sheaves and D-modules, in the derived sense D-modules Modules (Algebra) Sheaf theory Geometry, Algebraic D-Modul (DE-588)4305548-5 gnd rswk-swf D-Modul (DE-588)4305548-5 s 1\p DE-604 Schapira, Pierre 1943- Sonstige oth Erscheint auch als Druckausgabe 978-1-316-61345-0 https://doi.org/10.1017/CBO9781316675625 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kashiwara, Masaki 1947- Regular and irregular holonomic D-modules D-modules Modules (Algebra) Sheaf theory Geometry, Algebraic D-Modul (DE-588)4305548-5 gnd |
subject_GND | (DE-588)4305548-5 |
title | Regular and irregular holonomic D-modules |
title_alt | Regular & Irregular Holonomic D-Modules |
title_auth | Regular and irregular holonomic D-modules |
title_exact_search | Regular and irregular holonomic D-modules |
title_full | Regular and irregular holonomic D-modules Masaki Kashiwara, Pierre Schapira |
title_fullStr | Regular and irregular holonomic D-modules Masaki Kashiwara, Pierre Schapira |
title_full_unstemmed | Regular and irregular holonomic D-modules Masaki Kashiwara, Pierre Schapira |
title_short | Regular and irregular holonomic D-modules |
title_sort | regular and irregular holonomic d modules |
topic | D-modules Modules (Algebra) Sheaf theory Geometry, Algebraic D-Modul (DE-588)4305548-5 gnd |
topic_facet | D-modules Modules (Algebra) Sheaf theory Geometry, Algebraic D-Modul |
url | https://doi.org/10.1017/CBO9781316675625 |
work_keys_str_mv | AT kashiwaramasaki regularandirregularholonomicdmodules AT schapirapierre regularandirregularholonomicdmodules AT kashiwaramasaki regularirregularholonomicdmodules AT schapirapierre regularirregularholonomicdmodules |