Cox rings:
Cox rings are significant global invariants of algebraic varieties, naturally generalizing homogeneous coordinate rings of projective spaces. This book provides a largely self-contained introduction to Cox rings, with a particular focus on concrete aspects of the theory. Besides the rigorous present...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2015
|
Schriftenreihe: | Cambridge studies in advanced mathematics
144 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 URL des Erstveröffentlichers |
Zusammenfassung: | Cox rings are significant global invariants of algebraic varieties, naturally generalizing homogeneous coordinate rings of projective spaces. This book provides a largely self-contained introduction to Cox rings, with a particular focus on concrete aspects of the theory. Besides the rigorous presentation of the basic concepts, other central topics include the case of finitely generated Cox rings and its relation to toric geometry; various classes of varieties with group actions; the surface case; and applications in arithmetic problems, in particular Manin's conjecture. The introductory chapters require only basic knowledge in algebraic geometry. The more advanced chapters also touch on algebraic groups, surface theory, and arithmetic geometry. Each chapter ends with exercises and problems. These comprise mini-tutorials and examples complementing the text, guided exercises for topics not discussed in the text, and, finally, several open problems of varying difficulty |
Beschreibung: | 1 online resource (viii, 530 Seiten) |
ISBN: | 9781139175852 |
DOI: | 10.1017/CBO9781139175852 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940173 | ||
003 | DE-604 | ||
005 | 20190124 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781139175852 |c Online |9 978-1-139-17585-2 | ||
024 | 7 | |a 10.1017/CBO9781139175852 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139175852 | ||
035 | |a (OCoLC)967598255 | ||
035 | |a (DE-599)BVBBV043940173 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 516.3/53 |2 23 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Arzhantsev, Ivan |4 aut | |
240 | 1 | 0 | |a Kolʹt͡sa Koksa |
245 | 1 | 0 | |a Cox rings |c Ivan Arzhantsev, Moscow State University, Ulrich Derenthal, Leibniz Universität Hannover, Jürgen Hausen, Eberhard Karls Universität Tübingen, Antonio Laface, Universidad de Concepción |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2015 | |
300 | |a 1 online resource (viii, 530 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge studies in advanced mathematics |v 144 | |
520 | |a Cox rings are significant global invariants of algebraic varieties, naturally generalizing homogeneous coordinate rings of projective spaces. This book provides a largely self-contained introduction to Cox rings, with a particular focus on concrete aspects of the theory. Besides the rigorous presentation of the basic concepts, other central topics include the case of finitely generated Cox rings and its relation to toric geometry; various classes of varieties with group actions; the surface case; and applications in arithmetic problems, in particular Manin's conjecture. The introductory chapters require only basic knowledge in algebraic geometry. The more advanced chapters also touch on algebraic groups, surface theory, and arithmetic geometry. Each chapter ends with exercises and problems. These comprise mini-tutorials and examples complementing the text, guided exercises for topics not discussed in the text, and, finally, several open problems of varying difficulty | ||
650 | 4 | |a Algebraic varieties | |
650 | 4 | |a Rings (Algebra) | |
650 | 0 | 7 | |a Ring |g Mathematik |0 (DE-588)4128084-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ring |g Mathematik |0 (DE-588)4128084-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Derenthal, Ulrich |d 1978- |0 (DE-588)132749351 |4 aut | |
700 | 1 | |a Hausen, Jürgen |4 aut | |
700 | 1 | |a Laface, Antonio |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-02462-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139175852 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349143 | ||
966 | e | |u https://doi.org/10.1017/CBO9781139175852 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139175852 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139175852 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880287350784 |
---|---|
any_adam_object | |
author | Arzhantsev, Ivan Derenthal, Ulrich 1978- Hausen, Jürgen Laface, Antonio |
author_GND | (DE-588)132749351 |
author_facet | Arzhantsev, Ivan Derenthal, Ulrich 1978- Hausen, Jürgen Laface, Antonio |
author_role | aut aut aut aut |
author_sort | Arzhantsev, Ivan |
author_variant | i a ia u d ud j h jh a l al |
building | Verbundindex |
bvnumber | BV043940173 |
classification_rvk | SK 240 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139175852 (OCoLC)967598255 (DE-599)BVBBV043940173 |
dewey-full | 516.3/53 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/53 |
dewey-search | 516.3/53 |
dewey-sort | 3516.3 253 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139175852 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03080nmm a2200505zcb4500</leader><controlfield tag="001">BV043940173</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190124 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139175852</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-17585-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139175852</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139175852</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967598255</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940173</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/53</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arzhantsev, Ivan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Kolʹt͡sa Koksa</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cox rings</subfield><subfield code="c">Ivan Arzhantsev, Moscow State University, Ulrich Derenthal, Leibniz Universität Hannover, Jürgen Hausen, Eberhard Karls Universität Tübingen, Antonio Laface, Universidad de Concepción</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 530 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">144</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cox rings are significant global invariants of algebraic varieties, naturally generalizing homogeneous coordinate rings of projective spaces. This book provides a largely self-contained introduction to Cox rings, with a particular focus on concrete aspects of the theory. Besides the rigorous presentation of the basic concepts, other central topics include the case of finitely generated Cox rings and its relation to toric geometry; various classes of varieties with group actions; the surface case; and applications in arithmetic problems, in particular Manin's conjecture. The introductory chapters require only basic knowledge in algebraic geometry. The more advanced chapters also touch on algebraic groups, surface theory, and arithmetic geometry. Each chapter ends with exercises and problems. These comprise mini-tutorials and examples complementing the text, guided exercises for topics not discussed in the text, and, finally, several open problems of varying difficulty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic varieties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rings (Algebra)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Derenthal, Ulrich</subfield><subfield code="d">1978-</subfield><subfield code="0">(DE-588)132749351</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hausen, Jürgen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Laface, Antonio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-02462-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139175852</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349143</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139175852</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139175852</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139175852</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940173 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:12Z |
institution | BVB |
isbn | 9781139175852 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349143 |
oclc_num | 967598255 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 online resource (viii, 530 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge studies in advanced mathematics |
spelling | Arzhantsev, Ivan aut Kolʹt͡sa Koksa Cox rings Ivan Arzhantsev, Moscow State University, Ulrich Derenthal, Leibniz Universität Hannover, Jürgen Hausen, Eberhard Karls Universität Tübingen, Antonio Laface, Universidad de Concepción Cambridge Cambridge University Press 2015 1 online resource (viii, 530 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 144 Cox rings are significant global invariants of algebraic varieties, naturally generalizing homogeneous coordinate rings of projective spaces. This book provides a largely self-contained introduction to Cox rings, with a particular focus on concrete aspects of the theory. Besides the rigorous presentation of the basic concepts, other central topics include the case of finitely generated Cox rings and its relation to toric geometry; various classes of varieties with group actions; the surface case; and applications in arithmetic problems, in particular Manin's conjecture. The introductory chapters require only basic knowledge in algebraic geometry. The more advanced chapters also touch on algebraic groups, surface theory, and arithmetic geometry. Each chapter ends with exercises and problems. These comprise mini-tutorials and examples complementing the text, guided exercises for topics not discussed in the text, and, finally, several open problems of varying difficulty Algebraic varieties Rings (Algebra) Ring Mathematik (DE-588)4128084-2 gnd rswk-swf Ring Mathematik (DE-588)4128084-2 s DE-604 Derenthal, Ulrich 1978- (DE-588)132749351 aut Hausen, Jürgen aut Laface, Antonio aut Erscheint auch als Druck-Ausgabe 978-1-107-02462-5 https://doi.org/10.1017/CBO9781139175852 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Arzhantsev, Ivan Derenthal, Ulrich 1978- Hausen, Jürgen Laface, Antonio Cox rings Algebraic varieties Rings (Algebra) Ring Mathematik (DE-588)4128084-2 gnd |
subject_GND | (DE-588)4128084-2 |
title | Cox rings |
title_alt | Kolʹt͡sa Koksa |
title_auth | Cox rings |
title_exact_search | Cox rings |
title_full | Cox rings Ivan Arzhantsev, Moscow State University, Ulrich Derenthal, Leibniz Universität Hannover, Jürgen Hausen, Eberhard Karls Universität Tübingen, Antonio Laface, Universidad de Concepción |
title_fullStr | Cox rings Ivan Arzhantsev, Moscow State University, Ulrich Derenthal, Leibniz Universität Hannover, Jürgen Hausen, Eberhard Karls Universität Tübingen, Antonio Laface, Universidad de Concepción |
title_full_unstemmed | Cox rings Ivan Arzhantsev, Moscow State University, Ulrich Derenthal, Leibniz Universität Hannover, Jürgen Hausen, Eberhard Karls Universität Tübingen, Antonio Laface, Universidad de Concepción |
title_short | Cox rings |
title_sort | cox rings |
topic | Algebraic varieties Rings (Algebra) Ring Mathematik (DE-588)4128084-2 gnd |
topic_facet | Algebraic varieties Rings (Algebra) Ring Mathematik |
url | https://doi.org/10.1017/CBO9781139175852 |
work_keys_str_mv | AT arzhantsevivan kolʹtsakoksa AT derenthalulrich kolʹtsakoksa AT hausenjurgen kolʹtsakoksa AT lafaceantonio kolʹtsakoksa AT arzhantsevivan coxrings AT derenthalulrich coxrings AT hausenjurgen coxrings AT lafaceantonio coxrings |