Oligomorphic permutation groups:
The study of permutation groups has always been closely associated with that of highly symmetric structures. The objects considered here are countably infinite, but have only finitely many different substructures of any given finite size. They are precisely those structures which are determined by f...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1990
|
Schriftenreihe: | London Mathematical Society lecture note series
152 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The study of permutation groups has always been closely associated with that of highly symmetric structures. The objects considered here are countably infinite, but have only finitely many different substructures of any given finite size. They are precisely those structures which are determined by first-order logical axioms together with the assumption of countability. This book concerns such structures, their substructures and their automorphism groups. A wide range of techniques are used: group theory, combinatorics, Baire category and measure among them. The book arose from lectures given at a research symposium and retains their informal style, whilst including as well many recent results from a variety of sources. It concludes with exercises and unsolved research problems |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (viii, 160 pages) |
ISBN: | 9780511549809 |
DOI: | 10.1017/CBO9780511549809 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940137 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1990 |||| o||u| ||||||eng d | ||
020 | |a 9780511549809 |c Online |9 978-0-511-54980-9 | ||
024 | 7 | |a 10.1017/CBO9780511549809 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511549809 | ||
035 | |a (OCoLC)967694000 | ||
035 | |a (DE-599)BVBBV043940137 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.2 |2 20 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Cameron, Peter J. |d 1947- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Oligomorphic permutation groups |c Peter J. Cameron |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1990 | |
300 | |a 1 online resource (viii, 160 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 152 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a The study of permutation groups has always been closely associated with that of highly symmetric structures. The objects considered here are countably infinite, but have only finitely many different substructures of any given finite size. They are precisely those structures which are determined by first-order logical axioms together with the assumption of countability. This book concerns such structures, their substructures and their automorphism groups. A wide range of techniques are used: group theory, combinatorics, Baire category and measure among them. The book arose from lectures given at a research symposium and retains their informal style, whilst including as well many recent results from a variety of sources. It concludes with exercises and unsolved research problems | ||
650 | 4 | |a Permutation groups | |
650 | 0 | 7 | |a Modelltheorie |0 (DE-588)4114617-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Permutationsgruppe |0 (DE-588)4173833-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Oligomorphe Permutationsgruppe |0 (DE-588)4242859-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Permutationsgruppe |0 (DE-588)4173833-0 |D s |
689 | 0 | 1 | |a Modelltheorie |0 (DE-588)4114617-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Oligomorphe Permutationsgruppe |0 (DE-588)4242859-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-38836-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511549809 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349107 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511549809 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511549809 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880209756160 |
---|---|
any_adam_object | |
author | Cameron, Peter J. 1947- |
author_facet | Cameron, Peter J. 1947- |
author_role | aut |
author_sort | Cameron, Peter J. 1947- |
author_variant | p j c pj pjc |
building | Verbundindex |
bvnumber | BV043940137 |
classification_rvk | SI 320 SK 260 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511549809 (OCoLC)967694000 (DE-599)BVBBV043940137 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511549809 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03002nmm a2200541zcb4500</leader><controlfield tag="001">BV043940137</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511549809</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54980-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511549809</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511549809</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967694000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940137</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cameron, Peter J.</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Oligomorphic permutation groups</subfield><subfield code="c">Peter J. Cameron</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 160 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">152</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The study of permutation groups has always been closely associated with that of highly symmetric structures. The objects considered here are countably infinite, but have only finitely many different substructures of any given finite size. They are precisely those structures which are determined by first-order logical axioms together with the assumption of countability. This book concerns such structures, their substructures and their automorphism groups. A wide range of techniques are used: group theory, combinatorics, Baire category and measure among them. The book arose from lectures given at a research symposium and retains their informal style, whilst including as well many recent results from a variety of sources. It concludes with exercises and unsolved research problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Permutation groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modelltheorie</subfield><subfield code="0">(DE-588)4114617-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Permutationsgruppe</subfield><subfield code="0">(DE-588)4173833-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Oligomorphe Permutationsgruppe</subfield><subfield code="0">(DE-588)4242859-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Permutationsgruppe</subfield><subfield code="0">(DE-588)4173833-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Modelltheorie</subfield><subfield code="0">(DE-588)4114617-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Oligomorphe Permutationsgruppe</subfield><subfield code="0">(DE-588)4242859-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-38836-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511549809</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349107</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511549809</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511549809</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940137 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:12Z |
institution | BVB |
isbn | 9780511549809 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349107 |
oclc_num | 967694000 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (viii, 160 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Cameron, Peter J. 1947- Verfasser aut Oligomorphic permutation groups Peter J. Cameron Cambridge Cambridge University Press 1990 1 online resource (viii, 160 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 152 Title from publisher's bibliographic system (viewed on 05 Oct 2015) The study of permutation groups has always been closely associated with that of highly symmetric structures. The objects considered here are countably infinite, but have only finitely many different substructures of any given finite size. They are precisely those structures which are determined by first-order logical axioms together with the assumption of countability. This book concerns such structures, their substructures and their automorphism groups. A wide range of techniques are used: group theory, combinatorics, Baire category and measure among them. The book arose from lectures given at a research symposium and retains their informal style, whilst including as well many recent results from a variety of sources. It concludes with exercises and unsolved research problems Permutation groups Modelltheorie (DE-588)4114617-7 gnd rswk-swf Permutationsgruppe (DE-588)4173833-0 gnd rswk-swf Oligomorphe Permutationsgruppe (DE-588)4242859-2 gnd rswk-swf Permutationsgruppe (DE-588)4173833-0 s Modelltheorie (DE-588)4114617-7 s 1\p DE-604 Oligomorphe Permutationsgruppe (DE-588)4242859-2 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-38836-8 https://doi.org/10.1017/CBO9780511549809 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cameron, Peter J. 1947- Oligomorphic permutation groups Permutation groups Modelltheorie (DE-588)4114617-7 gnd Permutationsgruppe (DE-588)4173833-0 gnd Oligomorphe Permutationsgruppe (DE-588)4242859-2 gnd |
subject_GND | (DE-588)4114617-7 (DE-588)4173833-0 (DE-588)4242859-2 |
title | Oligomorphic permutation groups |
title_auth | Oligomorphic permutation groups |
title_exact_search | Oligomorphic permutation groups |
title_full | Oligomorphic permutation groups Peter J. Cameron |
title_fullStr | Oligomorphic permutation groups Peter J. Cameron |
title_full_unstemmed | Oligomorphic permutation groups Peter J. Cameron |
title_short | Oligomorphic permutation groups |
title_sort | oligomorphic permutation groups |
topic | Permutation groups Modelltheorie (DE-588)4114617-7 gnd Permutationsgruppe (DE-588)4173833-0 gnd Oligomorphe Permutationsgruppe (DE-588)4242859-2 gnd |
topic_facet | Permutation groups Modelltheorie Permutationsgruppe Oligomorphe Permutationsgruppe |
url | https://doi.org/10.1017/CBO9780511549809 |
work_keys_str_mv | AT cameronpeterj oligomorphicpermutationgroups |