Continuous lattices and domains:
Information content and programming semantics are just two of the applications of the mathematical concepts of order, continuity and domains. The authors develop the mathematical foundations of partially ordered sets with completeness properties of various degrees, in particular directed complete or...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2003
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 93 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Information content and programming semantics are just two of the applications of the mathematical concepts of order, continuity and domains. The authors develop the mathematical foundations of partially ordered sets with completeness properties of various degrees, in particular directed complete ordered sets and complete lattices. Uniquely, they focus on partially ordered sets that have an extra order relation, modelling the notion that one element 'finitely approximates' another, something closely related to intrinsic topologies linking order and topology. Extensive use is made of topological ideas, both by defining useful topologies on the structures themselves and by developing close connections with numerous aspects of topology. The theory so developed not only has applications to computer science but also within mathematics to such areas as analysis, the spectral theory of algebras and the theory of computability. This authoritative, comprehensive account of the subject will be essential for all those working in the area |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xxxvi, 591 pages) |
ISBN: | 9780511542725 |
DOI: | 10.1017/CBO9780511542725 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940123 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780511542725 |c Online |9 978-0-511-54272-5 | ||
024 | 7 | |a 10.1017/CBO9780511542725 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511542725 | ||
035 | |a (OCoLC)704513719 | ||
035 | |a (DE-599)BVBBV043940123 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 511.3/3 |2 21 | |
084 | |a SK 150 |0 (DE-625)143218: |2 rvk | ||
100 | 1 | |a Gierz, Gerhard |e Verfasser |4 aut | |
245 | 1 | 0 | |a Continuous lattices and domains |c G. Gierz [and others] |
246 | 1 | 3 | |a Continuous Lattices & Domains |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2003 | |
300 | |a 1 online resource (xxxvi, 591 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 93 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Foreword to A Compendium of Continuous Lattices -- Introduction to A Compendium of Continuous Lattices -- A Primer on Ordered Sets and Lattices -- I. Order Theory of Domains -- II. The Scott Topology -- III. The Lawson Topology -- IV. Morphisms and Functors -- V. Spectral Theory of Continuous Lattices -- VI. Compact Posets and Semilattices -- VII. Topological Algebra and Lattice Theory: Applications -- Dissertation and Master's Theses -- Memos Circulated in the Seminar on Continuity in Semilattices (SCS) | |
520 | |a Information content and programming semantics are just two of the applications of the mathematical concepts of order, continuity and domains. The authors develop the mathematical foundations of partially ordered sets with completeness properties of various degrees, in particular directed complete ordered sets and complete lattices. Uniquely, they focus on partially ordered sets that have an extra order relation, modelling the notion that one element 'finitely approximates' another, something closely related to intrinsic topologies linking order and topology. Extensive use is made of topological ideas, both by defining useful topologies on the structures themselves and by developing close connections with numerous aspects of topology. The theory so developed not only has applications to computer science but also within mathematics to such areas as analysis, the spectral theory of algebras and the theory of computability. This authoritative, comprehensive account of the subject will be essential for all those working in the area | ||
650 | 4 | |a Continuous lattices | |
650 | 0 | 7 | |a Verband |g Mathematik |0 (DE-588)4062565-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vollständiger Verband |0 (DE-588)4425949-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Verband |g Mathematik |0 (DE-588)4062565-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Vollständiger Verband |0 (DE-588)4425949-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-80338-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511542725 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349093 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511542725 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511542725 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880172007424 |
---|---|
any_adam_object | |
author | Gierz, Gerhard |
author_facet | Gierz, Gerhard |
author_role | aut |
author_sort | Gierz, Gerhard |
author_variant | g g gg |
building | Verbundindex |
bvnumber | BV043940123 |
classification_rvk | SK 150 |
collection | ZDB-20-CBO |
contents | Foreword to A Compendium of Continuous Lattices -- Introduction to A Compendium of Continuous Lattices -- A Primer on Ordered Sets and Lattices -- I. Order Theory of Domains -- II. The Scott Topology -- III. The Lawson Topology -- IV. Morphisms and Functors -- V. Spectral Theory of Continuous Lattices -- VI. Compact Posets and Semilattices -- VII. Topological Algebra and Lattice Theory: Applications -- Dissertation and Master's Theses -- Memos Circulated in the Seminar on Continuity in Semilattices (SCS) |
ctrlnum | (ZDB-20-CBO)CR9780511542725 (OCoLC)704513719 (DE-599)BVBBV043940123 |
dewey-full | 511.3/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/3 |
dewey-search | 511.3/3 |
dewey-sort | 3511.3 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511542725 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03659nmm a2200529zcb4500</leader><controlfield tag="001">BV043940123</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511542725</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54272-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511542725</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511542725</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)704513719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940123</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/3</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 150</subfield><subfield code="0">(DE-625)143218:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gierz, Gerhard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continuous lattices and domains</subfield><subfield code="c">G. Gierz [and others]</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Continuous Lattices & Domains</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxxvi, 591 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 93</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Foreword to A Compendium of Continuous Lattices -- Introduction to A Compendium of Continuous Lattices -- A Primer on Ordered Sets and Lattices -- I. Order Theory of Domains -- II. The Scott Topology -- III. The Lawson Topology -- IV. Morphisms and Functors -- V. Spectral Theory of Continuous Lattices -- VI. Compact Posets and Semilattices -- VII. Topological Algebra and Lattice Theory: Applications -- Dissertation and Master's Theses -- Memos Circulated in the Seminar on Continuity in Semilattices (SCS)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Information content and programming semantics are just two of the applications of the mathematical concepts of order, continuity and domains. The authors develop the mathematical foundations of partially ordered sets with completeness properties of various degrees, in particular directed complete ordered sets and complete lattices. Uniquely, they focus on partially ordered sets that have an extra order relation, modelling the notion that one element 'finitely approximates' another, something closely related to intrinsic topologies linking order and topology. Extensive use is made of topological ideas, both by defining useful topologies on the structures themselves and by developing close connections with numerous aspects of topology. The theory so developed not only has applications to computer science but also within mathematics to such areas as analysis, the spectral theory of algebras and the theory of computability. This authoritative, comprehensive account of the subject will be essential for all those working in the area</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuous lattices</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verband</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4062565-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vollständiger Verband</subfield><subfield code="0">(DE-588)4425949-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verband</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4062565-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Vollständiger Verband</subfield><subfield code="0">(DE-588)4425949-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-80338-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511542725</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349093</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511542725</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511542725</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940123 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:12Z |
institution | BVB |
isbn | 9780511542725 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349093 |
oclc_num | 704513719 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xxxvi, 591 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Gierz, Gerhard Verfasser aut Continuous lattices and domains G. Gierz [and others] Continuous Lattices & Domains Cambridge Cambridge University Press 2003 1 online resource (xxxvi, 591 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 93 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Foreword to A Compendium of Continuous Lattices -- Introduction to A Compendium of Continuous Lattices -- A Primer on Ordered Sets and Lattices -- I. Order Theory of Domains -- II. The Scott Topology -- III. The Lawson Topology -- IV. Morphisms and Functors -- V. Spectral Theory of Continuous Lattices -- VI. Compact Posets and Semilattices -- VII. Topological Algebra and Lattice Theory: Applications -- Dissertation and Master's Theses -- Memos Circulated in the Seminar on Continuity in Semilattices (SCS) Information content and programming semantics are just two of the applications of the mathematical concepts of order, continuity and domains. The authors develop the mathematical foundations of partially ordered sets with completeness properties of various degrees, in particular directed complete ordered sets and complete lattices. Uniquely, they focus on partially ordered sets that have an extra order relation, modelling the notion that one element 'finitely approximates' another, something closely related to intrinsic topologies linking order and topology. Extensive use is made of topological ideas, both by defining useful topologies on the structures themselves and by developing close connections with numerous aspects of topology. The theory so developed not only has applications to computer science but also within mathematics to such areas as analysis, the spectral theory of algebras and the theory of computability. This authoritative, comprehensive account of the subject will be essential for all those working in the area Continuous lattices Verband Mathematik (DE-588)4062565-5 gnd rswk-swf Vollständiger Verband (DE-588)4425949-9 gnd rswk-swf Verband Mathematik (DE-588)4062565-5 s 1\p DE-604 Vollständiger Verband (DE-588)4425949-9 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-80338-0 https://doi.org/10.1017/CBO9780511542725 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gierz, Gerhard Continuous lattices and domains Foreword to A Compendium of Continuous Lattices -- Introduction to A Compendium of Continuous Lattices -- A Primer on Ordered Sets and Lattices -- I. Order Theory of Domains -- II. The Scott Topology -- III. The Lawson Topology -- IV. Morphisms and Functors -- V. Spectral Theory of Continuous Lattices -- VI. Compact Posets and Semilattices -- VII. Topological Algebra and Lattice Theory: Applications -- Dissertation and Master's Theses -- Memos Circulated in the Seminar on Continuity in Semilattices (SCS) Continuous lattices Verband Mathematik (DE-588)4062565-5 gnd Vollständiger Verband (DE-588)4425949-9 gnd |
subject_GND | (DE-588)4062565-5 (DE-588)4425949-9 |
title | Continuous lattices and domains |
title_alt | Continuous Lattices & Domains |
title_auth | Continuous lattices and domains |
title_exact_search | Continuous lattices and domains |
title_full | Continuous lattices and domains G. Gierz [and others] |
title_fullStr | Continuous lattices and domains G. Gierz [and others] |
title_full_unstemmed | Continuous lattices and domains G. Gierz [and others] |
title_short | Continuous lattices and domains |
title_sort | continuous lattices and domains |
topic | Continuous lattices Verband Mathematik (DE-588)4062565-5 gnd Vollständiger Verband (DE-588)4425949-9 gnd |
topic_facet | Continuous lattices Verband Mathematik Vollständiger Verband |
url | https://doi.org/10.1017/CBO9780511542725 |
work_keys_str_mv | AT gierzgerhard continuouslatticesanddomains AT gierzgerhard continuouslatticesdomains |