The theory of H(b) spaces, Volume 2:
An H(b) space is defined as a collection of analytic functions that are in the image of an operator. The theory of H(b) spaces bridges two classical subjects, complex analysis and operator theory, which makes it both appealing and demanding. Volume 1 of this comprehensive treatment is devoted to the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2016
|
Schriftenreihe: | New mathematical monographs
21 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | An H(b) space is defined as a collection of analytic functions that are in the image of an operator. The theory of H(b) spaces bridges two classical subjects, complex analysis and operator theory, which makes it both appealing and demanding. Volume 1 of this comprehensive treatment is devoted to the preliminary subjects required to understand the foundation of H(b) spaces, such as Hardy spaces, Fourier analysis, integral representation theorems, Carleson measures, Toeplitz and Hankel operators, various types of shift operators and Clark measures. Volume 2 focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercises and hints, and figures are included throughout to illustrate the theory. Together, these two volumes provide everything the reader needs to understand and appreciate this beautiful branch of mathematics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 27 Oct 2016) |
Beschreibung: | 1 online resource (xix, 619 pages) |
ISBN: | 9781139226769 |
DOI: | 10.1017/CBO9781139226769 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940059 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781139226769 |c Online |9 978-1-139-22676-9 | ||
024 | 7 | |a 10.1017/CBO9781139226769 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139226769 | ||
035 | |a (OCoLC)967758634 | ||
035 | |a (DE-599)BVBBV043940059 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.733 |2 23 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
100 | 1 | |a Fricain, Emmanuel |d 1971- |e Verfasser |4 aut | |
245 | 1 | 0 | |a The theory of H(b) spaces, Volume 2 |c Emmanuel Fricain, Université Lille I, Javad Mashreghi, Université Laval, Quebec |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2016 | |
300 | |a 1 online resource (xix, 619 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a New mathematical monographs |v 21 | |
500 | |a Title from publisher's bibliographic system (viewed on 27 Oct 2016) | ||
505 | 8 | |a Machine generated contents note: List of figures; Preface; List of symbols; Important conventions; 1. *Normed linear spaces and their operators; 2. Some families of operators; 3. Harmonic functions on the open unit disc; 4. Analytic functions on the open unit disc; 5. The corona problem; 6. Extreme and exposed points; 7. More advanced results in operator theory; 8. The shift operator; 9. Analytic reproducing kernel Hilbert spaces; 10. Bases in Banach spaces; 11. Hankel operators; 12. Toeplitz operators; 13. Cauchy transform and Clark measures; 14. Model subspaces KT; 15. Bases of reproducing kernels and interpolation; Bibliography; Index | |
520 | |a An H(b) space is defined as a collection of analytic functions that are in the image of an operator. The theory of H(b) spaces bridges two classical subjects, complex analysis and operator theory, which makes it both appealing and demanding. Volume 1 of this comprehensive treatment is devoted to the preliminary subjects required to understand the foundation of H(b) spaces, such as Hardy spaces, Fourier analysis, integral representation theorems, Carleson measures, Toeplitz and Hankel operators, various types of shift operators and Clark measures. Volume 2 focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercises and hints, and figures are included throughout to illustrate the theory. Together, these two volumes provide everything the reader needs to understand and appreciate this beautiful branch of mathematics | ||
650 | 4 | |a Hilbert space | |
650 | 4 | |a Hardy spaces | |
650 | 4 | |a Analytic functions | |
650 | 4 | |a Linear operators | |
650 | 0 | 7 | |a Analytische Funktion |0 (DE-588)4142348-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hardy-Raum |0 (DE-588)4159109-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hilbert-Raum |0 (DE-588)4159850-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operatortheorie |0 (DE-588)4075665-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 0 | 1 | |a Hardy-Raum |0 (DE-588)4159109-4 |D s |
689 | 0 | 2 | |a Analytische Funktion |0 (DE-588)4142348-3 |D s |
689 | 0 | 3 | |a Operatortheorie |0 (DE-588)4075665-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Mashreghi, Javad |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-02778-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139226769 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349030 | ||
966 | e | |u https://doi.org/10.1017/CBO9781139226769 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139226769 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880031498240 |
---|---|
any_adam_object | |
author | Fricain, Emmanuel 1971- |
author_facet | Fricain, Emmanuel 1971- |
author_role | aut |
author_sort | Fricain, Emmanuel 1971- |
author_variant | e f ef |
building | Verbundindex |
bvnumber | BV043940059 |
classification_rvk | SK 600 SK 620 SK 750 |
collection | ZDB-20-CBO |
contents | Machine generated contents note: List of figures; Preface; List of symbols; Important conventions; 1. *Normed linear spaces and their operators; 2. Some families of operators; 3. Harmonic functions on the open unit disc; 4. Analytic functions on the open unit disc; 5. The corona problem; 6. Extreme and exposed points; 7. More advanced results in operator theory; 8. The shift operator; 9. Analytic reproducing kernel Hilbert spaces; 10. Bases in Banach spaces; 11. Hankel operators; 12. Toeplitz operators; 13. Cauchy transform and Clark measures; 14. Model subspaces KT; 15. Bases of reproducing kernels and interpolation; Bibliography; Index |
ctrlnum | (ZDB-20-CBO)CR9781139226769 (OCoLC)967758634 (DE-599)BVBBV043940059 |
dewey-full | 515/.733 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.733 |
dewey-search | 515/.733 |
dewey-sort | 3515 3733 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139226769 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03898nmm a2200601zcb4500</leader><controlfield tag="001">BV043940059</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139226769</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-22676-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139226769</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139226769</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967758634</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940059</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.733</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fricain, Emmanuel</subfield><subfield code="d">1971-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The theory of H(b) spaces, Volume 2</subfield><subfield code="c">Emmanuel Fricain, Université Lille I, Javad Mashreghi, Université Laval, Quebec</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xix, 619 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">New mathematical monographs</subfield><subfield code="v">21</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 27 Oct 2016)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Machine generated contents note: List of figures; Preface; List of symbols; Important conventions; 1. *Normed linear spaces and their operators; 2. Some families of operators; 3. Harmonic functions on the open unit disc; 4. Analytic functions on the open unit disc; 5. The corona problem; 6. Extreme and exposed points; 7. More advanced results in operator theory; 8. The shift operator; 9. Analytic reproducing kernel Hilbert spaces; 10. Bases in Banach spaces; 11. Hankel operators; 12. Toeplitz operators; 13. Cauchy transform and Clark measures; 14. Model subspaces KT; 15. Bases of reproducing kernels and interpolation; Bibliography; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An H(b) space is defined as a collection of analytic functions that are in the image of an operator. The theory of H(b) spaces bridges two classical subjects, complex analysis and operator theory, which makes it both appealing and demanding. Volume 1 of this comprehensive treatment is devoted to the preliminary subjects required to understand the foundation of H(b) spaces, such as Hardy spaces, Fourier analysis, integral representation theorems, Carleson measures, Toeplitz and Hankel operators, various types of shift operators and Clark measures. Volume 2 focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercises and hints, and figures are included throughout to illustrate the theory. Together, these two volumes provide everything the reader needs to understand and appreciate this beautiful branch of mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hardy spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear operators</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Funktion</subfield><subfield code="0">(DE-588)4142348-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hardy-Raum</subfield><subfield code="0">(DE-588)4159109-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hardy-Raum</subfield><subfield code="0">(DE-588)4159109-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Analytische Funktion</subfield><subfield code="0">(DE-588)4142348-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mashreghi, Javad</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-02778-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139226769</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349030</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139226769</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139226769</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940059 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:12Z |
institution | BVB |
isbn | 9781139226769 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349030 |
oclc_num | 967758634 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xix, 619 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press |
record_format | marc |
series2 | New mathematical monographs |
spelling | Fricain, Emmanuel 1971- Verfasser aut The theory of H(b) spaces, Volume 2 Emmanuel Fricain, Université Lille I, Javad Mashreghi, Université Laval, Quebec Cambridge Cambridge University Press 2016 1 online resource (xix, 619 pages) txt rdacontent c rdamedia cr rdacarrier New mathematical monographs 21 Title from publisher's bibliographic system (viewed on 27 Oct 2016) Machine generated contents note: List of figures; Preface; List of symbols; Important conventions; 1. *Normed linear spaces and their operators; 2. Some families of operators; 3. Harmonic functions on the open unit disc; 4. Analytic functions on the open unit disc; 5. The corona problem; 6. Extreme and exposed points; 7. More advanced results in operator theory; 8. The shift operator; 9. Analytic reproducing kernel Hilbert spaces; 10. Bases in Banach spaces; 11. Hankel operators; 12. Toeplitz operators; 13. Cauchy transform and Clark measures; 14. Model subspaces KT; 15. Bases of reproducing kernels and interpolation; Bibliography; Index An H(b) space is defined as a collection of analytic functions that are in the image of an operator. The theory of H(b) spaces bridges two classical subjects, complex analysis and operator theory, which makes it both appealing and demanding. Volume 1 of this comprehensive treatment is devoted to the preliminary subjects required to understand the foundation of H(b) spaces, such as Hardy spaces, Fourier analysis, integral representation theorems, Carleson measures, Toeplitz and Hankel operators, various types of shift operators and Clark measures. Volume 2 focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercises and hints, and figures are included throughout to illustrate the theory. Together, these two volumes provide everything the reader needs to understand and appreciate this beautiful branch of mathematics Hilbert space Hardy spaces Analytic functions Linear operators Analytische Funktion (DE-588)4142348-3 gnd rswk-swf Hardy-Raum (DE-588)4159109-4 gnd rswk-swf Hilbert-Raum (DE-588)4159850-7 gnd rswk-swf Operatortheorie (DE-588)4075665-8 gnd rswk-swf Hilbert-Raum (DE-588)4159850-7 s Hardy-Raum (DE-588)4159109-4 s Analytische Funktion (DE-588)4142348-3 s Operatortheorie (DE-588)4075665-8 s DE-604 Mashreghi, Javad Sonstige oth Erscheint auch als Druckausgabe 978-1-107-02778-7 https://doi.org/10.1017/CBO9781139226769 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Fricain, Emmanuel 1971- The theory of H(b) spaces, Volume 2 Machine generated contents note: List of figures; Preface; List of symbols; Important conventions; 1. *Normed linear spaces and their operators; 2. Some families of operators; 3. Harmonic functions on the open unit disc; 4. Analytic functions on the open unit disc; 5. The corona problem; 6. Extreme and exposed points; 7. More advanced results in operator theory; 8. The shift operator; 9. Analytic reproducing kernel Hilbert spaces; 10. Bases in Banach spaces; 11. Hankel operators; 12. Toeplitz operators; 13. Cauchy transform and Clark measures; 14. Model subspaces KT; 15. Bases of reproducing kernels and interpolation; Bibliography; Index Hilbert space Hardy spaces Analytic functions Linear operators Analytische Funktion (DE-588)4142348-3 gnd Hardy-Raum (DE-588)4159109-4 gnd Hilbert-Raum (DE-588)4159850-7 gnd Operatortheorie (DE-588)4075665-8 gnd |
subject_GND | (DE-588)4142348-3 (DE-588)4159109-4 (DE-588)4159850-7 (DE-588)4075665-8 |
title | The theory of H(b) spaces, Volume 2 |
title_auth | The theory of H(b) spaces, Volume 2 |
title_exact_search | The theory of H(b) spaces, Volume 2 |
title_full | The theory of H(b) spaces, Volume 2 Emmanuel Fricain, Université Lille I, Javad Mashreghi, Université Laval, Quebec |
title_fullStr | The theory of H(b) spaces, Volume 2 Emmanuel Fricain, Université Lille I, Javad Mashreghi, Université Laval, Quebec |
title_full_unstemmed | The theory of H(b) spaces, Volume 2 Emmanuel Fricain, Université Lille I, Javad Mashreghi, Université Laval, Quebec |
title_short | The theory of H(b) spaces, Volume 2 |
title_sort | the theory of h b spaces volume 2 |
topic | Hilbert space Hardy spaces Analytic functions Linear operators Analytische Funktion (DE-588)4142348-3 gnd Hardy-Raum (DE-588)4159109-4 gnd Hilbert-Raum (DE-588)4159850-7 gnd Operatortheorie (DE-588)4075665-8 gnd |
topic_facet | Hilbert space Hardy spaces Analytic functions Linear operators Analytische Funktion Hardy-Raum Hilbert-Raum Operatortheorie |
url | https://doi.org/10.1017/CBO9781139226769 |
work_keys_str_mv | AT fricainemmanuel thetheoryofhbspacesvolume2 AT mashreghijavad thetheoryofhbspacesvolume2 |