Feynman-Kac-Type theorems and Gibbs measures on path space:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2018]
|
Ausgabe: | 2nd rev. ed. |
Schriftenreihe: | De gruyter studies in mathematics
34 |
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FHA01 FHR01 FKE01 FLA01 TUM01 UBW01 UBY01 UER01 UPA01 FCO01 Volltext Volltext |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (ca. X, 550 Seiten) |
ISBN: | 9783110330397 |
DOI: | 10.1515/9783110330397 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043936051 | ||
003 | DE-604 | ||
005 | 20200703 | ||
007 | cr|uuu---uuuuu | ||
008 | 161205s2018 |||| o||u| ||||||eng d | ||
020 | |a 9783110330397 |c Online (PDF) |9 978-3-11-033039-7 | ||
024 | 7 | |a 10.1515/9783110330397 |2 doi | |
035 | |a (OCoLC)992475485 | ||
035 | |a (DE-599)BVBBV043936051 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-898 |a DE-29 |a DE-83 |a DE-1046 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-706 |a DE-1043 |a DE-858 | ||
082 | 0 | |a 530.143 |2 22/ger | |
082 | 0 | |a 515/.724 | |
082 | 0 | |a 515.724 |2 22/ger | |
084 | |a SK 910 |0 (DE-625)143270: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Lőrinczi, József |d 1966- |e Verfasser |0 (DE-588)173059767 |4 aut | |
245 | 1 | 0 | |a Feynman-Kac-Type theorems and Gibbs measures on path space |c József Lörinczi, Fumio Hiroshima, Volker Betz |
250 | |a 2nd rev. ed. | ||
263 | |a 201801 | ||
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a 1 Online-Ressource (ca. X, 550 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a De gruyter studies in mathematics |v 34 | |
500 | |a Includes bibliographical references and index | ||
505 | 8 | |a This monograph offers a state-of-the-art mathematical account of functional integration methods in the context of self-adjoint operators and semigroups using the concepts and tools of modern stochastic analysis. These ideas are then applied principally to a rigorous treatment of some fundamental models of quantum field theory. In this self-contained presentation of the material both beginners and experts are addressed, while putting emphasis on the interdisciplinary character of the subject. József L?rinczi, Loughborough University, UK; Fumio Hiroshima, University of Kyushu, Fukuoka, Japan; Volker Betz, University of Warwick, Coventry, UK. | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Integration, Functional | |
650 | 4 | |a Quantum field theory |x Mathematics | |
650 | 4 | |a Stochastic analysis | |
650 | 0 | 7 | |a Selbstadjungierter Operator |0 (DE-588)4180810-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastische Analysis |0 (DE-588)4132272-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pfadintegral |0 (DE-588)4173973-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gibbs-Maß |0 (DE-588)4157328-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Feynman-Kac-Formel |0 (DE-588)4820124-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Selbstadjungierter Operator |0 (DE-588)4180810-1 |D s |
689 | 0 | 1 | |a Feynman-Kac-Formel |0 (DE-588)4820124-8 |D s |
689 | 0 | 2 | |a Pfadintegral |0 (DE-588)4173973-5 |D s |
689 | 0 | 3 | |a Gibbs-Maß |0 (DE-588)4157328-6 |D s |
689 | 0 | 4 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | 5 | |a Stochastische Analysis |0 (DE-588)4132272-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Betz, Volker |d 1972- |e Verfasser |0 (DE-588)123809568 |4 aut | |
700 | 1 | |a Hiroshima, Fumio |e Verfasser |0 (DE-588)1016708270 |4 aut | |
830 | 0 | |a De gruyter studies in mathematics |v 34 |w (DE-604)BV044966417 |9 34 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110330397 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 0 | |u https://www.degruyter.com/view/product/209774 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-GSM |a ZDB-23-DGG |a ZDB-23-DMA | ||
940 | 1 | |q ZDB-23-DMA16 | |
940 | 1 | |q ZDB-23-DMA18 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029345029 | ||
966 | e | |u https://doi.org/10.1515/9783110330397 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110330397 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110330397 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/view/product/209774 |l FHR01 |p ZDB-23-DMA |q ZDB-23-DMA16 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110330397 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110330397 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u http://www.ub.tum.de/ebo |l TUM01 |p ZDB-23-DGG |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/view/product/209774 |l UBW01 |p ZDB-23-DMA |q ZDB-23-DMA19 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110330397 |l UBY01 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/view/product/209774 |l UER01 |p ZDB-23-DMA |q UER_Einzeltitelkauf_ ZDB-23-DMA18 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110330397 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110330397 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176873101459456 |
---|---|
any_adam_object | |
author | Lőrinczi, József 1966- Betz, Volker 1972- Hiroshima, Fumio |
author_GND | (DE-588)173059767 (DE-588)123809568 (DE-588)1016708270 |
author_facet | Lőrinczi, József 1966- Betz, Volker 1972- Hiroshima, Fumio |
author_role | aut aut aut |
author_sort | Lőrinczi, József 1966- |
author_variant | j l jl v b vb f h fh |
building | Verbundindex |
bvnumber | BV043936051 |
classification_rvk | SK 910 SK 820 |
collection | ZDB-23-GSM ZDB-23-DGG ZDB-23-DMA |
contents | This monograph offers a state-of-the-art mathematical account of functional integration methods in the context of self-adjoint operators and semigroups using the concepts and tools of modern stochastic analysis. These ideas are then applied principally to a rigorous treatment of some fundamental models of quantum field theory. In this self-contained presentation of the material both beginners and experts are addressed, while putting emphasis on the interdisciplinary character of the subject. József L?rinczi, Loughborough University, UK; Fumio Hiroshima, University of Kyushu, Fukuoka, Japan; Volker Betz, University of Warwick, Coventry, UK. |
ctrlnum | (OCoLC)992475485 (DE-599)BVBBV043936051 |
dewey-full | 530.143 515/.724 515.724 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics 515 - Analysis |
dewey-raw | 530.143 515/.724 515.724 |
dewey-search | 530.143 515/.724 515.724 |
dewey-sort | 3530.143 |
dewey-tens | 530 - Physics 510 - Mathematics |
discipline | Physik Mathematik |
doi_str_mv | 10.1515/9783110330397 |
edition | 2nd rev. ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04779nmm a2200853zcb4500</leader><controlfield tag="001">BV043936051</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200703 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161205s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110330397</subfield><subfield code="c">Online (PDF)</subfield><subfield code="9">978-3-11-033039-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110330397</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992475485</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043936051</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.143</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.724</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.724</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 910</subfield><subfield code="0">(DE-625)143270:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lőrinczi, József</subfield><subfield code="d">1966-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)173059767</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feynman-Kac-Type theorems and Gibbs measures on path space</subfield><subfield code="c">József Lörinczi, Fumio Hiroshima, Volker Betz</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd rev. ed.</subfield></datafield><datafield tag="263" ind1=" " ind2=" "><subfield code="a">201801</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ca. X, 550 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De gruyter studies in mathematics</subfield><subfield code="v">34</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This monograph offers a state-of-the-art mathematical account of functional integration methods in the context of self-adjoint operators and semigroups using the concepts and tools of modern stochastic analysis. These ideas are then applied principally to a rigorous treatment of some fundamental models of quantum field theory. In this self-contained presentation of the material both beginners and experts are addressed, while putting emphasis on the interdisciplinary character of the subject. József L?rinczi, Loughborough University, UK; Fumio Hiroshima, University of Kyushu, Fukuoka, Japan; Volker Betz, University of Warwick, Coventry, UK.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integration, Functional</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Selbstadjungierter Operator</subfield><subfield code="0">(DE-588)4180810-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gibbs-Maß</subfield><subfield code="0">(DE-588)4157328-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Feynman-Kac-Formel</subfield><subfield code="0">(DE-588)4820124-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Selbstadjungierter Operator</subfield><subfield code="0">(DE-588)4180810-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Feynman-Kac-Formel</subfield><subfield code="0">(DE-588)4820124-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Gibbs-Maß</subfield><subfield code="0">(DE-588)4157328-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Betz, Volker</subfield><subfield code="d">1972-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123809568</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hiroshima, Fumio</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1016708270</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De gruyter studies in mathematics</subfield><subfield code="v">34</subfield><subfield code="w">(DE-604)BV044966417</subfield><subfield code="9">34</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110330397</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.degruyter.com/view/product/209774</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-GSM</subfield><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA16</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA18</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029345029</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110330397</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110330397</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110330397</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/view/product/209774</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA16</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110330397</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110330397</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.ub.tum.de/ebo</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/view/product/209774</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA19</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110330397</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/view/product/209774</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">UER_Einzeltitelkauf_ ZDB-23-DMA18</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110330397</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110330397</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043936051 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:06Z |
institution | BVB |
isbn | 9783110330397 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029345029 |
oclc_num | 992475485 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-29 DE-83 DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-706 DE-1043 DE-858 |
owner_facet | DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-29 DE-83 DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-706 DE-1043 DE-858 |
physical | 1 Online-Ressource (ca. X, 550 Seiten) |
psigel | ZDB-23-GSM ZDB-23-DGG ZDB-23-DMA ZDB-23-DMA16 ZDB-23-DMA18 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA ZDB-23-DMA16 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG TUM_Paketkauf ZDB-23-DMA ZDB-23-DMA19 ZDB-23-DMA UER_Einzeltitelkauf_ ZDB-23-DMA18 ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | De Gruyter |
record_format | marc |
series | De gruyter studies in mathematics |
series2 | De gruyter studies in mathematics |
spelling | Lőrinczi, József 1966- Verfasser (DE-588)173059767 aut Feynman-Kac-Type theorems and Gibbs measures on path space József Lörinczi, Fumio Hiroshima, Volker Betz 2nd rev. ed. 201801 Berlin ; Boston De Gruyter [2018] © 2018 1 Online-Ressource (ca. X, 550 Seiten) txt rdacontent c rdamedia cr rdacarrier De gruyter studies in mathematics 34 Includes bibliographical references and index This monograph offers a state-of-the-art mathematical account of functional integration methods in the context of self-adjoint operators and semigroups using the concepts and tools of modern stochastic analysis. These ideas are then applied principally to a rigorous treatment of some fundamental models of quantum field theory. In this self-contained presentation of the material both beginners and experts are addressed, while putting emphasis on the interdisciplinary character of the subject. József L?rinczi, Loughborough University, UK; Fumio Hiroshima, University of Kyushu, Fukuoka, Japan; Volker Betz, University of Warwick, Coventry, UK. Mathematik Integration, Functional Quantum field theory Mathematics Stochastic analysis Selbstadjungierter Operator (DE-588)4180810-1 gnd rswk-swf Stochastische Analysis (DE-588)4132272-1 gnd rswk-swf Pfadintegral (DE-588)4173973-5 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Gibbs-Maß (DE-588)4157328-6 gnd rswk-swf Feynman-Kac-Formel (DE-588)4820124-8 gnd rswk-swf Selbstadjungierter Operator (DE-588)4180810-1 s Feynman-Kac-Formel (DE-588)4820124-8 s Pfadintegral (DE-588)4173973-5 s Gibbs-Maß (DE-588)4157328-6 s Quantenfeldtheorie (DE-588)4047984-5 s Stochastische Analysis (DE-588)4132272-1 s DE-604 Betz, Volker 1972- Verfasser (DE-588)123809568 aut Hiroshima, Fumio Verfasser (DE-588)1016708270 aut De gruyter studies in mathematics 34 (DE-604)BV044966417 34 https://doi.org/10.1515/9783110330397 Verlag URL des Erstveröffentlichers Volltext https://www.degruyter.com/view/product/209774 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Lőrinczi, József 1966- Betz, Volker 1972- Hiroshima, Fumio Feynman-Kac-Type theorems and Gibbs measures on path space De gruyter studies in mathematics This monograph offers a state-of-the-art mathematical account of functional integration methods in the context of self-adjoint operators and semigroups using the concepts and tools of modern stochastic analysis. These ideas are then applied principally to a rigorous treatment of some fundamental models of quantum field theory. In this self-contained presentation of the material both beginners and experts are addressed, while putting emphasis on the interdisciplinary character of the subject. József L?rinczi, Loughborough University, UK; Fumio Hiroshima, University of Kyushu, Fukuoka, Japan; Volker Betz, University of Warwick, Coventry, UK. Mathematik Integration, Functional Quantum field theory Mathematics Stochastic analysis Selbstadjungierter Operator (DE-588)4180810-1 gnd Stochastische Analysis (DE-588)4132272-1 gnd Pfadintegral (DE-588)4173973-5 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd Gibbs-Maß (DE-588)4157328-6 gnd Feynman-Kac-Formel (DE-588)4820124-8 gnd |
subject_GND | (DE-588)4180810-1 (DE-588)4132272-1 (DE-588)4173973-5 (DE-588)4047984-5 (DE-588)4157328-6 (DE-588)4820124-8 |
title | Feynman-Kac-Type theorems and Gibbs measures on path space |
title_auth | Feynman-Kac-Type theorems and Gibbs measures on path space |
title_exact_search | Feynman-Kac-Type theorems and Gibbs measures on path space |
title_full | Feynman-Kac-Type theorems and Gibbs measures on path space József Lörinczi, Fumio Hiroshima, Volker Betz |
title_fullStr | Feynman-Kac-Type theorems and Gibbs measures on path space József Lörinczi, Fumio Hiroshima, Volker Betz |
title_full_unstemmed | Feynman-Kac-Type theorems and Gibbs measures on path space József Lörinczi, Fumio Hiroshima, Volker Betz |
title_short | Feynman-Kac-Type theorems and Gibbs measures on path space |
title_sort | feynman kac type theorems and gibbs measures on path space |
topic | Mathematik Integration, Functional Quantum field theory Mathematics Stochastic analysis Selbstadjungierter Operator (DE-588)4180810-1 gnd Stochastische Analysis (DE-588)4132272-1 gnd Pfadintegral (DE-588)4173973-5 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd Gibbs-Maß (DE-588)4157328-6 gnd Feynman-Kac-Formel (DE-588)4820124-8 gnd |
topic_facet | Mathematik Integration, Functional Quantum field theory Mathematics Stochastic analysis Selbstadjungierter Operator Stochastische Analysis Pfadintegral Quantenfeldtheorie Gibbs-Maß Feynman-Kac-Formel |
url | https://doi.org/10.1515/9783110330397 https://www.degruyter.com/view/product/209774 |
volume_link | (DE-604)BV044966417 |
work_keys_str_mv | AT lorinczijozsef feynmankactypetheoremsandgibbsmeasuresonpathspace AT betzvolker feynmankactypetheoremsandgibbsmeasuresonpathspace AT hiroshimafumio feynmankactypetheoremsandgibbsmeasuresonpathspace |